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ABSTRACT 
 

Image categorization is the problem of classifying 
images into one or more of several possible categories or 
classes, which are defined in advance. Classifiers can be 
trained using machine learning algorithms, but existing 
machine learning algorithms cannot work with images 
directly. We consider a representation based on texture 
segmentation and a similarity measure which has been 
used successfully in the related area of image retrieval. 
A generalized kernel for use with the support vector 
machine (SVM) algorithm can be built from such a 
similarity measure. We compare this approach with a 
more straightforward representation based on auto-
correlograms. 
 
1  INTRODUCTION 
 

Besides textual and relational data, people increasingly 
have to deal with pictorial data, or data in the form of 
images. Large pictorial databases are being produced as 
archives digitize their collections, and additionally the 
World Wide Web contains a huge number of images. Apart 
from purely technical problems of storing and processing 
such large amounts of data, the emergence of large 
collections of images opens the problems of enabling the 
users to make sense of this data and find what they need. 
Image categorization deals with one aspect of this problem: 
given a set of images and a set of predefined categories or 
classes, we assume that each image should belong to one or 
possibly several of these categories. For a large collection it 
would be impractical to have a human observer categorize 
all the images, so we want to be able to classify the images 
automatically after a small number of images has been 
classified manually to be used for training the automatical 
classifiers. 
 However, this view of image categorization as a 
machine learning task immediately opens up a new 
problem: existing machine learning algorithms generally 
cannot work with images directly. Instead, they often 
assume they will be dealing with instances described by 
vectors or tuples. We need to be able to represent images 
using structures of this kind to make use of existing 
machine learning algorithms. 

 We can build on existing work in image retrieval, 
which is a related area where the problem of representation 
has already been encountered. In image retrieval, the user 
poses a query to the system and the system should find 
images that are somehow relevant to the query. Thus a 
way of representing the query, a way of representing 
images, and a way of comparing a query and an image are 
needed. If textual descriptions of images can be easily 
obtained, querying by keywords is both technically 
feasible and often useful enough in practice. However, 
when such external information about images is not 
available, one needs to rely solely on what can be 
automatically extracted from the images themselves. The 
user’s query is then often simply a request to look for 
images similar to a given query image (this approach is 
known as “querying by content”). 
 In image categorization, if a new image is similar to 
training images from a particular category, it should 
probably itself belong to that category; in image retrieval, 
if an image from the database is similar to the query 
image, it should probably be shown to the user. Thus we 
see that both areas need a way of representing images and 
assessing similarity between them. Many image 
representations and similarity measures have been 
proposed in image retrieval, and we would like to assess 
some of them from the point of view of image 
categorization as well. 
 One popular class of image representations is based 
on simplifying the image by approximating the color of 
each pixel by the nearest color from a predefined and fixed 
color palette; this can also be seen as partitioning (or 
quantizing) the space of all possible colors. Some 
information is then recorded about the presence of each 
color on the image. When simply the proportion of the 
image covered by (the pixels of) that color is stored, the 
resulting description is called a histogram [SB91]. 
However, this disregards all spatial information (how the 
color is distributed around the image), and improved 
versions have been proposed. For example, autocorrelo-
grams [HKM97] record probabilities that a randomly 
chosen pixel in the vicinity of a randomly chosen pixel of 
a given color will itself be of the same color. This retains 
information about the amount of a color present on the 
image, but also records something about the spatial ar-



 

rangement of each color. Still, all “global” representations 
of this type can be seen as somewhat rigid as they record a 
strictly fixed amount of data for each image. 
 Another, more sophisticated, class of image repre-
sentations is based on segmentation, or dividing an image 
into a set of regions such that each region is roughly 
homogeneous in color and/or texture. Each image is then 
represented by a set of regions; each region is typically 
described by a short vector that is a by-product of the 
segmentation procedure (containing e.g. the average color 
of the region, information about texture, and so on), as well 
as by its location on the image (i.e. which parts of the 
image are covered by that region). In general, regions might 
overlap, and each region might itself be composed of 
several disjoint parts; this is not inherently problematic as 
they need not be shown to the user. Various segmentation 
algorithms have been proposed [NRS99], as well as 
measures of similarity between segmented images (such as 
IRM [LWW00]). Representations based on segmentation 
can adapt well to differences in complexity between 
images, and have been used successfully in image retrieval 
[NRS99, WLW00]. 
 To use these representations for image categorization, 
one could use global representations (e.g. autocorrelo-
grams) in combination with any of several machine 
learning algorithms (such as support vector machines); or 
use a segmentation-based similarity measure with an 
algorithm that allows an arbitrary similarity measure to be 
plugged into it (e.g. the nearest-neighbor method). 
However, it is less obvious how to use segmentation in 
combination with support vector machines, because the 
latter assume all instances to be described by vectors with 
the same number of components, while in the case of 
segmentation the description of each image has more 
structure than that, and the number of regions can also vary 
from image to image.  
 
2  SUPPORT VECTOR MACHINES 
 

Support Vector Machines (SVMs) [CV95] are a relatively 
recent family of machine learning algorithms that have 
been used successfully in many application domains. In the 
most elementary form of this method, we assume that each 
training example is a vector from some d-dimensional real 
space, and that there are exactly two classes, called positive 
and negative. (Several extensions to multiclass problems 
are possible, e.g. by training one classifier for each pair of 
classes [HL01].) We want to separate the positive vectors 
from the negative ones using a hyperplane such that all the 
training vectors lie on the correct side of the hyperplane 
and are as distant from it as possible. Maximizing this 
distance (known as the margin) from the plane to the 
nearest training example can be cast as an optimization 
problem, and it is also possible to look for tradeoffs in 
allowing some training instances to be misclassified if this 
leads to a wider margin on the other training instances. 

 It turns out that the optimization problem on which the 
SVM algorithm is based, as well as the resulting 
hyperplane, can be expressed so that the training vectors 
need never be accessed directly, as long as we are able to 
compute the dot product of any two vectors. Now suppose 
we used some mapping ϕ to map our original instances xi 
into some other (possibly higher-dimensional) vector space 
F. Let K(xi, xj) := 〈ϕ(xi), ϕ(xj)〉F be a function that, given 
two instances xi and xj, computes the scalar product (in F) 
of their images under the mapping ϕ. It follows from the 
above that we could traing a hyperplane in F without ever 
working with the mapped vectors ϕ(xi) explicitly, as long 
as we are able to compute K(xi, xj) for any two instances xi 
and xj. The function K defined in this way is known as a 
kernel. The importance of kernels arises from the fact that 
a hyperplane in F could correspond to some highly 
nonlinear separation surface in the original space; thus, 
kernels allow the SVM algorithm to induce nonlinear 
models. 
 A kernel corresponds to a scalar product in some 
vector space and can therefore in some sense be seen as a 
sort of similarity measure: the doc product of two vectors 
(if we fix their length) is greatest when they point in the 
same direction, and then decreases as the angle between 
them increases. However, the converse is not true, as not 
every similarity measure corresponds to a scalar product in 
some vector space. If we used a non-kernel similarity 
measure as if it were an actual kernel, we would no longer 
have guarantees that the SVM training algorithm would 
converge, and even if it converged there would be no 
theoretical grounds to expect the resulting classifier to 
have good performance. 
 
3  GENERALIZED KERNELS 
 

Generalized SVMs have been proposed by Mangasarian 
[Man00] to allow an arbitrary similarity function to be 
used in a way analogous to a kernel. Given a set of training 
examples xi with their labels yi (yi = +1 for positive and -1 
for negative examples), the original SVM algorithm would 
produce a classifier of the form prediction(x) = sgn[〈w, 
φ(x)〉F + b], where w is the normal vector to the separating 
hyperplane (in the F-space), and b is a real number that 
indicates the position of the hyperplane. In addition, w 
would be of the form Σi αi yi φ(xi), where αi would be 
scalars obtained during training to maximize the margin of 
the resulting hyperplane. Thus the classifier can also be 
expressed as prediction(x) = sgn[b + Σiαiyi〈xi, x〉F]. 
 Now if some arbitrary function K were used instead of 
a proper kernel function, giving us a classifier of the form 
sgn[b + Σi αi yi K(xi, x)], this might still be a perfectly 
reasonable and useful classifier, but it wouldn’t necessarily 
correspond to some hyperplane in some vector space F to 
which the instances xi and x might have been mapped. 
Thus we couldn’t obtain the αi values using the criterion of 
maximizing the margin, because there wouldn’t even be a 
hyperplane whose margin to maximize. Instead, [Man00] 



 

proposes to minimize the value αTHα (subject to the same 
constraints as before, i.e. that our training instances should 
lie on the correct side of the separation surface) for some 
positive definite matrix H. In the simplest case, we would 
take H = I and minimize Σi αi

2. This can be interpreted 
intuitively as looking for a separation surface that can be 
expressed in the simplest possible way, possibly with many 
αi equal to 0 (i.e. without using the training example xi in 
the description of the separating surface). 
 It can be shown that the formulation for H = I is equi-
valent to mapping each instance x into the vector (K(x, x1), 
. . . , K(x, xn)) of its similarities (as measured by K) to all 
the training instances x1, . . . , xn, and then using an ordinary 
linear support vector machine over this new representation. 
For the problem of image categorization, this amounts to 
the intuitively appealing suggestion that two images should 
be treated as similar if they exhibit a similar pattern of 
similarities to known training images. 
 
4  REGION CLUSTERING 
 

In this section we consider another approach to using seg-
mentation-based representations for image categorization. 
Each image has its own set of regions and regions 
belonging to different sets are in a sense quite independent 
of each other. This leads to the need for special similarity 
measures that compare two images by considering all pairs 
of regions, and aggregating the similarities of regions into a 
measure of similarity between the images. As an 
alternative, we propose to bring the region-based 
representations of images to a “common denominator” by 
clustering the descriptions of all the regions of all the 
training images. An image would then be described by 
recording, for each cluster of regions, what proportion of 
the area of this image is covered by regions of this cluster. 
If there are d region clusters, each image would now be 
represented by a d-dimensional real vector (with possibly 
many zero-value components). With all images represented 
in this same d-dimensional space, we can then use the 
ordinary linear support vector machine to train classifiers. 
 
5  EXPERIMENTAL EVALUATION 
 

To compare the approaches described in the previous 
sections, we conducted experiments on the misc database, 
which is publicly available (http://www-db.stanford.edu/ 
IMAGE/) and has already been used in image retrieval 
literature [WWFW97, NRS99], as well as in our earlier 
work on image categorization [Bra01]. We selected 1172 
images from the database and manually assigned each of 
them to one of 14 categories (butterflies, US flag, sunsets, 
autumn, flowers, planets, satellite images of Earth, cars, 
mountains, clouds, sea, surfboards, sailboats, prairie 
animals). Categories vary in size and difficulty (some have 
characteristic and easily recognizable color distributions, 
while some categories are quite similar in this respect and 
would therefore be more difficult to distinguish, e.g. sea 
and clouds with lots of blue and white pixels). To train the 

SVM classifiers, we used the LibSvm [CL01] program, 
which has the advantage of natively supporting multiclass 
problems (it uses the all-pairs approach to convert a 
multiclass problem to several two-class problems). 
 We compared the following approaches to image 
categorization: 
 1. Images are represented in the HSV (hue, saturation, 
value) color space, which is quantized into 256 colors (the 
H axis is split into 16 and the S and V axes into 4 ranges). 
Each image is then described by an autocorrelogram in the 
resulting quantized color space. The autocorrelograms are 
1024-dimensional vectors and are used as input for linear 
SVM. 
 2. Images are segmented into regions using the 
segmentation algorithm from WALRUS [NRS99]. The 
IRM similarity metric [LWW00] is then used to construct 
a generalized kernel as described in Section 3 above. In 
other words, each image is represented by a vector of its 
IRM similarities to all the training images; these vectors 
are then used as input for linear SVM. 
 3. Images are segmented as in the previous paragraph. 
Each region is described by a short (12-dimensional) 
vector, which is a by-product of the segmentation 
algorithm. The vectors resulting from all the regions of all 
the training images are then clustered (here we use the 
same algorithm, BIRCH [ZRL96], that is also used by 
WALRUS during segmentation). An image is then 
described by a sparse vector specifying what proportion of 
the area of the image is covered by regions from each 
region cluster. Depending on the parameters of the 
segmentation, the average number of regions per image 
might vary from less than ten to more than a hundred; 
then, depending on the parameters of the clustering, the 
number of region clusters (and hence the dimensionality of 
the space in which our images are now represented) is 
usually on the order of a few hundred. Once images are 
represented in this way, linear SVM can be used to train 
classifiers for them. 
 For the sake of comparison, we also report the 
performance of the nearest neighbor method with the IRM 
similarity metric (that is, each image is predicted to belong 
to the same class as the most similar training image). All 
performance values reported here are averages (and 
standard errors) based on tenfold stratified cross-
validation. 
 

Method Classification accuracy 
Autocorrelograms 80.2 % ± 1.3 % 

Generalized kernels 79.0 % ± 1.3 % 
Region clustering 70.0 % ± 1.6 % 

Nearest neighbors + IRM 69.1 % ± 1.3 % 
 
As expected, the nearest-neighbor method is in general 
less successful than the approaches based on SVM. 
However, it turns out that the two segmentation-based 
approaches do not outperform the representation based on 
autocorrelograms. The performance of the generalized 



 

kernel method is not significantly different (using a paired 
t-test) from that of autocorrelograms, and the generalized 
kernel method has the additional disadvantage of much 
greater computational. 
 In addition, the performance of the region clustering 
approach is remarkably poor. A closer examination 
suggests that the partitioning of regions into region clusters 
is problematic and unstable. For example, if the centroid of 
each cluster is recorded and then all regions are distributed 
to the cluster with the nearest centroid, most of the regions 
will tend to move to a different cluster than they were 
originally attached to. This means that two otherwise 
similar regions might fall into different clusters by pure 
chance, and the similarity between their images would thus 
go unnoticed. The authors of the BIRCH clustering 
algorithm were aware of the possibility of such problems, 
and proposed several redistribution passes where the 
regions are redistributed to the nearest centroids, but in our 
experiments this did not lead to a really stable partition 
even after five or ten such passes. 
 An alternative way of making use of the region 
clustering approach might be to include the test images in 
the region clustering phase. This really amounts to a form 
of transduction, i.e. using test data as if it was simply 
additional unlabeled training data. It ensures that both the 
training images and the test images are really being 
represented in a space that treats both groups of images 
equally. In this setting, the performance of the region 
clustering increases considerably, and it achieves an 
accuracy of 86.4 % ± 1.0 %. However, for the comparison 
with other methods to be fair, transduction should also be 
included in the SVM learning process. Since LibSvm does 
not support tranduction, we used the SvmLight program 
[Joa99a] for these experiments; it implements Joachims’ 
transduction SVM algorithm [Joa99b]. With transduction 
SVM, region clustering achieves an average accuracy of 
91.9 % ± 1.0 %, while autocorrelograms achieve an 
accuracy of 90.7 % ± 1.1 %. Although this difference is not 
really significant from a practical point of view (a t-test 
shows that it is statistically significant at a confidence level 
of 0.945, slightly below the usual 0.95), it suggests that the 
region clustering approach does have at least some 
potential to be useful. 
 
6  CONCLUSIONS AND FUTURE WORK 
 

Our experiments show that it is difficult to use seg-
mentation-based image representation methods in image 
categorization. Relatively complex ways of using infor-
mation obtained from segmentation, such as the generalized 
kernel approach and (to a lesser extent) the region 
clustering approach, have been found able to compete with 
a simpler and more straightforward approach such as 
autocorrelograms but not to significantly outperform it. 
 We nonetheless believe that there must be ways of 
using segmentation profitably for image categorization, just 
as it is used in image retrieval, and that this is still an 

interesting topic for future work. In particular, it would be 
interesting to further explore the influence of the clustering 
algorithm used in the region clustering approach, and to 
look for more stable clustering algorithms that would 
allow the region clustering approach to perform better in 
the inductive in additional to the transductive setting. In 
addition, as segmentation is a relatively complex task, and 
segmentation algorithms usually depend on several 
parameters, it would be interesting to explore the influence 
of these various parameters on the segmentation (and 
consequently on image categorization) in a more 
systematic way. 
 Additionally, the methods considered here should be 
tested on other datasets, as (given that widely different 
methods achieve highly similar accuracy values on the 
present dataset) it is perhaps simply unrealistic to expect 
better performance on the present dataset, as the categories 
have an essentially “semantic” motivation that the current 
image representation methods simply cannot capture. 
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