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ABSTRACT 
 

Rule learning is typically used in solving classification 
and prediction tasks. However, learning of classification 
rules can be adapted also to subgroup discovery.  Such 
an adaptation has already been done for the CN2 rule 
learning algorithm. In previous work this new 
algorithm, called CN2-SD, has been described in detail 
and applied to the well known UCI data sets showing its 
appropriateness for subgroup discovery. This paper 
summarizes the modifications needed for the adaptation 
of the CN2 rule learner to subgroup discovery and 
presents some results of its application to a real-life data 
set of UK traffic accidents, together with an initial 
evaluation of results by the traffic expert. 
 
1  INTRODUCTION 
 
Classical rule learning algorithms were designed to 
construct classification and prediction rules [3], [6]. In 
addition to this area of machine learning, referred to as 
predictive induction, developments in descriptive induction 
have recently gained much attention. These involve mining 
of association rules (e.g., the APRIORI association rule 
learning algorithm [1]), subgroup discovery (e.g., the 
MIDOS subgroup discovery algorithm [9]), and other 
approaches to non-classificatory induction. 
 
This paper summarizes the methodology, presented in [4],  
which was used for upgrading the classical rule learning 
algorithm CN2 [3], [2] to a subgroup discovery algorithm 
CN2-SD. In contrast with the CN2-SD implementation 
described in  [4], this paper uses a new implementation of 
CN2-SD in which we have modified the original Boswell’s 
implementation of the CN2 algorithm [2] to accommodate 
the changes needed to make it suitable to a subgroup 
discovery task. The goal of this paper is not to analyze in 
detail the deficiencies and benefits of the CN2-SD 
algorithm - this has already been done in [4], where the 
algorithm was studied on the data sets from the UCI 

Repository of Machine Learning [7]. The purpose of this 
paper is to apply the new algorithm to a real-life problem 
and have an expert evaluate the results. 
 
The paper is organized as follows. In Section 2 the 
background for this work is explained in short: the 
standard CN2 rule induction algorithm and the standard 
CN2 heuristics, as well as the weighted relative accuracy. 
Section 3 presents the modified CN2 algorithm, called 
CN2-SD, adapting the CN2 algorithm for subgroup 
discovery. Sections 2 and 3 are short versions of the same 
sections in [4]. They are given here for the sake of 
completeness and to make Section 4 more understandable. 
Section 4 presents the real-life data set together with the 
experimental settings, results of experiments and expert 
evaluation of results. Section 5 concludes by commenting 
the results and giving some directions for further work. 
 
2  BACKGROUND 
 
This section briefly presents the backgrounds: classical 
CN2 rule induction algorithm and standard CN2 heuristics, 
as well as the weighted relative accuracy heuristic. 
 
The CN2 Rule Induction Algorithm 
 
CN2 is an algorithm for inducing propositional 
classification rules [3]. CN2 consists of two main 
procedures: the search procedure that performs beam 
search in order to find a single rule and the control 
procedure that repeatedly executes the search. 
 
The search procedure performs beam search using the 
Laplace estimate [2] of the rule as a heuristic function. We 
replaced the accuracy measure with the weighted relative 
accuracy measure [8], defined in Equation 1. Additionally, 
CN2 can apply a significance test to the induced rule. The 
rule is considered to be significant, if it locates regularity 
unlikely to have occurred by chance. To test significance, 
CN2 uses the likelihood ratio statistic [3]. 



 

Two different control procedures are used in CN2: one for 
inducing an ordered list of rules and the other for the 
unordered case. Both ordered and unordered control 
procedures induce rules in a similar fashion, running the 
search procedure that finds the best rule, removing the 
examples covered by that rule and iteratively repeating this 
step until all examples have been covered. Detailed 
description of the difference between the two control 
procedures is given in [2]. 
 

More important than how the rules are produced is how 
they are interpreted. In the ordered case each rule depends 
on the rules that precede it, while in the unordered case 
each rule is interpreted separately and thus each rule 
represents an independent “chunk” of knowledge. 
 

The Weighted Relative Accuracy Heuristic 
 

Weighted relative accuracy (WRAcc) can be meaningfully 
applied both in the descriptive and predictive induction 
framework; in this paper we apply this heuristic for 
subgroup discovery. 
 

We use the following notation. Let )(Condn  stand for the 
number of instances covered by a rule CondClass ← , 

)(Classn  stand for the number of examples of class Class , 
and )( CondClassn ⋅  stand for the number of correctly 
classified examples (true positives). We use 

)( CondClassp ⋅  etc. for the corresponding probabilities. 
WRAcc  [5], [8] is then defined as follows: 
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Equation 1: The Weighted Relative Accuracy heuristic. 
 

WRAcc consists of two components: generality )(Condp , 
and relative accuracy )()|( ClasspCondClassp − . The 
second term, relative accuracy, is the accuracy gain relative 
to the fixed (default) rule trueClass ← . However, it is 
easy to obtain high relative accuracy with highly specific 
rules, i.e., rules with low generality )(Condp . To this end, 
generality is used as a “weight”, so that weighted relative 
accuracy trades off generality of the rule ( )(Condp , i.e., 
rule coverage) and relative accuracy . 
 

3  SUBGROUP DISCOVERY ALGORITHM CN2-SD 
 

The main modifications of the CN2 algorithm, making it 
appropriate for subgroup discovery, involve the implementation 
of the weighted covering algorithm and incorporation of 
example weights into the weighted relative accuracy 
heuristic. Both modifications are briefly described below. 
The complete description of the changes is given in [4]. 
 

The Weighted Covering Algorithm 
 

In the classical covering algorithm only the first few 
induced rules may be of interest as subgroup descriptors 
with sufficient coverage, since subsequently induced rules 
are induced from biased example subsets, i.e., subsets 

including only positive examples not covered by 
previously induced rules. This bias constrains the 
population for subgroup discovery in a way that is 
unnatural for the subgroup discovery process which is, in 
general, aimed at discovering interesting properties of 
subgroups of the entire population.  In contrast, the 
subsequent rules induced by the weighted covering 
algorithm allow for discovering interesting subgroup 
properties of the entire population. 
 

The weighted covering algorithm is modified in such a 
way that covered positive examples are not deleted from 
the current training set. Instead, in each run of the covering 
loop, the algorithm stores with each example a count how 
many times (with how many rules induced so far) the 
example has been covered. Weights derived from these 
example counts then appear in the computation of WRAcc. 
We have implemented two approaches: 
Multiplicative weights. In the first approach, weights 
decrease multiplicatively. For a given parameter 1<γ , 
weights of covered examples decrease as follows: 

iie γ=)( , where )(ie  is the weight of an example being 
covered i  times.  
Additive weights. In the second approach, weights of 
covered examples are modified as follows: )1/(1)( += iie . 
 

Modified WRAcc Heuristic with Example Weights 
 

The modification of CN2 reported in [8] affected only the 
heuristic function: weighted relative accuracy was used as 
search heuristic, instead of the Laplace heuristic of the 
original CN2, while everything else stayed the same. In 
[4], the heuristic function was further modified to enable 
handling example weights, which provide the means to 
consider different parts of the instance space in each 
iteration of the weighted covering algorithm. 
 

In the WRAcc computation (Equation 1) all probabilities 
are computed by relative frequencies. An example weight 
measures how important it is to cover this example in the 
next iteration. The initial example weight 1)0( =e  means 
that the example hasn't been covered by any rule, while 
lower weights mean that it has already been covered by 
previously generated rules. The modified WRAcc measure 
is then defined as follows: 
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Equation 2: The modified WRAcc heuristic. 

 
where 'N  is the sum of the weights of all examples, 

)(' Condn  is the sum of the weights of all covered 
examples, and )(' CondClassn ⋅  is the sum of the weights 
of all correctly covered examples. 
 
4  EXPERIMENTAL EVALUATION 
 

In contrast with the CN2-SD implementation described in  
[4], this paper uses a new implementation of CN2-SD in 
which we have modified the original Boswell’s 
implementation of the CN2 algorithm [2] to accommodate 
the changes needed to make it suitable to a subgroup 
discovery task.  



 

 
We evaluated the new CN2-SD approach on a real-life 
problem, namely the TRAFFIC data set described in 
Section 4.1. Due to large amounts of data, some 
preprocessing was needed before running the experiments. 
The data preprocessing step is described in Section 4.2. In 
Section 4.3 the results of experiments are given. These 
results were then shown to the domain expert whose 
comments are presented in Section 4.4. 
 

4.1 The TRAFFIC data set 
 

The TRAFFIC data set includes the records of all the 
accidents that happened on the roads of Great Britain 
between years 1979 and 1999. It is a relational data set 
consisting of 3 related sets of data: the ACCIDENT data, 
the VEHICLE data and the CASUALTY data. The 
ACCIDENT data consists of the records of all accidents 
happened over the given period of time; VEHICLE data 
includes data about all the vehicles involved in those 
accidents; CASUALTY data includes the data about all the 
casualties involved in the accidents. Consider the following 
example: “Two vehicles crashed in a traffic accident and 
three people were seriously injured in the crash”. In terms 
of the TRAFFIC data set this is recorded as one record in 
the ACCIDENT set, two records in the VEHICLE set and 
three records in the CASUALTY set. We can also see that 
the three sets are related one with the other. Every separate 
set is described by around 20 attributes and consists of 
more than 5 million records. 
 

4.2 Preprocessing of the data 
 

The enormous quantity of data in the TRAFFIC data set 
makes it practically impossible to run any data mining 
algorithm on the whole set. 
 

Therefore we have decided to take samples of the data set 
and perform the experiments on these samples, rather than 
on the whole data set. We focused on the ACCIDENT set of 
data and decided to examine only the accidents that  
happened in 10 districts (called Local Authorities (LAs)) 
across Great Britain. We have chosen the 5 areas with the 
most increasing trend of accidents and 5 areas with the most 
decreasing trend according to the results of regression 
analysis of the number of accidents that happened in each 
LA over the years. In this way we selected  10 data sets (one 
for each LA) with some ten thousands of examples each. 
We further sampled this data taking only 10% of the 
examples from each of the 10 sets. The characteristics of 
these 10 data sets are given in Table 1. Since all 10 sets are 
subsets of the same data set, they all have the same number 
of attributes (26 including the class attribute). Therefore 
Table 1 only gives the number of examples in each set and 
the distribution of the class attribute. The sets 1 to 5 
represent the 5 areas with the most decreasing trend of 
accidents  (set 1 being the “best”) and sets 6 to 10 the ones 
with the most increasing trend (set 6 being the “worst”). The 
Code numbers 1 through 10 do not correspond to the codes 
1 through 10 used for Local Authorities in the Database.  
 

LA NO of exs. Class Dist. (%)
1 6039 0.64/15.35/84.01
2 3627 1.15/16.80/82.04
3 2916 0.95/17.37/81.67
4 3182 1.10/19.60/79.29
5 2684 0.88/16.87/82.25
6 5487 1.35/12.74/85.90
7 1477 1.64/14.81/83.54
8 6381 1.66/17.31/81.02
9 1645 2.05/18.18/79.77

10 4375 1.82/17.11/81.05
 

Table 1: Characteristics of data sets. 
 
Among the 26 attributes describing each of the 10 data sets 
we chose the attribute “accident severity” to be the class 
attribute. The task that we have posed was therefore to find 
rules that predict the severity of an accident (slight, serious 
or fatal) from other attributes describing the accident, such 
as: “road class”, “speed limit”, “light condition”, etc. 
 
4.3 Results of experiments 
 
We further wanted to investigate if by running CN2-SD on 
the data sets described in Table 1, we are able to get some 
rules that are typical for the 5 areas with the most 
increasing trend of accidents as well as rules typical for the 
5 areas with the most decreasing trend. In Table 2 CN2-SD 
(we used the additive weights approach) and standard CN2 
are compared on the 10 LA sets in terms of: “number of 
induced rules” (R), ”relative average coverage” (CVG) and 
“accuracy of rules” (Acc). 
 

We have used 10-fold cross-validation to compute the 
accuracies of induced rule sets, whereas the number of 
rules and the relative average coverage were computed on 
rules induced from all available data. The relative average 
coverage measures the percentage of examples covered on 
average by one rule from the induced rule set. It is 
computed as: 

)( / )(covered
1
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where Rn  is the number of induced rules, EXSn  is the 
number of examples in the data set and )(covered i  is the 
number of examples covered by the i -th rule in the rule 
set. 
 

Standard CN2 CN2-SD (additive) LA 
R CVG Acc R CVG Acc 

1 22 6.25 83.95 10 13.08 83.94
2 19 4.78 81.98 9 13.20 82.20
3 31 1.44 79.05 11 10.66 79.15
4 25 6.54 81.46 9 14.49 81.66
5 20 5.51 81.46 14 7.49 81.23
6 29 5.26 85.88 13 10.45 85.86
7 17 5.29 81.02 9 12.96 81.02
8 34 4.37 79.73 14 8.80 79.76
9 13 6.82 83.40 14 8.40 82.74

10 28 5.05 80.97 11 11.64 80.83
Avg 23.8 5.13 81.89 11.4 11.12 81.84

 
Table 2: Experimental comparison of standard CN2 with CN2-SD. 



 

 
4.4 Comments of the domain expert 
 

We examined further the rules induced by the CN2-SD 
algorithm (additive weights). We focused on rules with high 
coverage and rules that cover a high percentage of the 
predicted class as those are the rule that are likely to reflect 
some regularity in the data. We have found a very surprising 
fact. One might expect the more severe the accident the 
greater number of people hurt up to the total number of 
occupants in the vehicles. Also common sense would tell the 
more the vehicles involved in the accident the more severe 
the accident. Contrary to our expectations we found two 
types of rules: 
• rules that classify an accident as “fatal” or “serious” 

when just one vehicle is involved in the accident; 
• rules that classify an accident as “slight” when two or 

more vehicles are involved and there are few casualties 
 

We have shown these results to the domain expert who 
pointed out an interesting fact about collecting the data for 
the ACCIDENT data set.  
 
The severity code in the ACCIDENT data set relates to the 
most severe injury among those reported for that Accident. 
Therefore a multiple vehicle accident with 1 fatal and 20 
slight injuries would be classified as fatal as one fatality 
occurred. Each individual CASUALTY injury severity is 
coded in the CASUALTY data set. 
 

Some injuries may be unreported at the accident scene, if 
the policeman compiles/revises the report after the event, 
new casualty/injury details can be reported (injuries that 
came to light after the event or reported for reasons relating 
to injury/insurance claims). However this is a very 
surprising fact that needs to be further investigated. We 
agreed with the expert that examining the ACCIDENT data 
set was not enough. Further examination of the VEHICLE 
and CASUALTY set is needed. 
 

5  CONCLUSIONS 
 

The comparative results in Section 4.3 (Table 2) show that 
CN2-SD induced on average smaller rule sets that included 
rules that had on average a higher coverage that those 
induced by the standard CN2 algorithm. The latter fact 
makes CN2-SD more suitable for the subgroup discovery 
task as each rule with high coverage represents potentially 
an interesting subgroup in the data. On the other hand the 
average accuracy of the CN2-SD rule sets was more or less 
the same as the accuracy of standard CN2 rules, which is 
very good given that the CN2-SD algorithm does not 
optimize rule accuracy. The above findings are not new an 
reflect the findings in [4]. 
 

It is worth noticing that that both CN2-SD and standard 
CN2 performed “worse than default” in terms of accuracy of 
induced rules, meaning that if we predicted the majority 
class (Table 1) we would have got better classification 
accuracy than by applying the induced rules. This fact is not 
surprising due to a very unbalanced class distribution and 

the way how the experiments were performed. Since 
classification was not the task addressed, we were not really 
interested in the accuracy of the rule sets but more in 
detecting interesting subgroups that the rules represented. 
 

The most interesting finding was the rule interpretation by 
the domain expert. What we found in our case study was 
that the result of a data mining process depends not only on 
the accuracy of the chosen method and the data that is at 
hand but also on how the data was collected. 
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