
String Kernels

Blaž Fortuna
Department of Knowledge Technologies

Jozef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
e-mail: blaz.fortuna@ijs.si

Abstract

This paper provides an overview of string ker-
nels. String kernels compare text documents by
the substrings they contain. Because of high com-
putational complexity, methods for approximating
string kernels are shown. Several extensions for
string kernels are also presented. Finally string ker-
nels are compared to BOW.

1 What Is A Kernel

Standard learning systems (like neural networks or
decision trees) operate on input data after they
have been transformed into feature vectors living
in an m dimensional space. In some cases the data
can not be easily described by explicit feature vec-
tors, for example graphs or text. In many cases
extracting explicit feature vectors can be almost as
hard as solving the whole problem.

Kernel Methods (KM), [4], are an alternative to
explicit feature extraction. The main part of KM is
a function known as kernel function which returns
the inner product between documents mapped into
a high dimensional feature space. In many cases the
inner product can be calculated without explicitly
computing feature vectors.

Several machine learning algorithms can be
rewritten in such way that feature vectors only ap-
pear inside inner product so there is no need to
calculate them explicitly. The best known example
is Support Vector Machine (SVM), but there are
also others: Kernel PCA, Kernel KCCA, Nearest
Neighbour, etc.

2 String Kernel
The most common technique for representing text
documents is Bag of Words (BOW) together with
TFIDF weighting [1]. In the BOW representation
there is a dimension for each word; a document is
than encoded as a feature vector with word frequen-
cies as elements. When using this approach, feature
vectors are explicitly calculated. Kernel function
between documents is the inner product between
these feature vectors.

The main idea of string kernels [2] is to com-
pare documents not by words, but by the substrings
they contain. These substrings do not need to be
contiguous, but they receive different weighting ac-
cording to degree of contiguity. For example: sub-
string ‘c-a-r’ is present both in word ‘card’ and ‘cus-
tard’ but with different weighting. Weight depends
on the length of substring and decay factor λ (both
defined later). In previous example substring ‘car’
would receive weight λ4 as part of ‘card’ and λ7 as
part of ‘custard’.

The advantage of this approach, comparing to
BOW, is that it can detect words with different suf-
fixes or prefixes: the words ‘microcomputer’, ‘com-
puters’ and ‘computerbased’ all share common sub-
strings.

Definition (String Subsequence Kernel – SSK)
Let Σ be a finite alphabet. A string is a finite se-
quence of characters from Σ, including empty se-
quence. For strings s and t we denote with |s| the
length of string s = s1 . . . s|s|, with st the string
obtained by concatenating the strings s and t and
with s[i : j] substring si . . . sj. We say that u is a
substring of s if there exists indices i = (i1, . . . , i|u|)
with 1 ≤ i1 < . . . < i|u| ≤ |s| such that u = s[i].

1

The length l(i) of the subsequence in s is i|u|−i1+1.
Feature mapping Φ for string s is given by defining
Φu for each u ∈ Σn as

Φu(s) =
∑

i:u=s[i]

λl(i)

for some λ ≤ 1. These features measure the num-
ber of occurrences of subsequences in the string s
weighting them according to their lengths. Hence,
the inner product of the feature vectors for two
strings s and t give a sum over all common sub-
sequences weighted according to their frequency of
occurrence and lengths

Kn(s, t) =
∑

u∈Σn

Φu(s)Φu(t) =

∑
u∈Σn

∑
i:u=s[i]

∑
j:u=t[j]

λl(i)+l(j).

Computation of features for n > 4 is very expen-
sive, hence the explicit use of such would be im-
possible, but it turns out that the kernel function
for these feature vectors can be calculated very effi-
ciently. In order to derive an efficient procedure for
computing such kernel we first introduce following
function. Let

K
′

i(s, t) =
∑

u∈Σn

∑
i:u=s[i]

∑
j:u=t[j]

λ|s|+|t|−i1−j1+2,

that is counting the length from the beginning of
the particular sequence through the end of strings
s and t instead of just l(i) and l(j). We can now
define a recursive computation for K

′

i and hence
compute Kn:

K
′

0(s, t) = 1, for all s, t,

K
′

i(s, t) = 0, if min(|s|, |t|) < i,
Ki(s, t) = 0, if min(|s|, |t|) < i,

K
′

i(sx, t) = λK
′

i(s, t)+∑
j:tj=x K

′

i−1(s, t[1 : j − 1])λ|t|−j+2,

i = 1, . . . , n− 1,
Kn(sx, t) = Kn(s, t)+∑

j:tj=x K
′

n−1(s, t[1 : j − 1])λ2.

To remove any bias introduced by different
lengths of document we normalize the feature vec-
tors by creating new embedding Φ̃(s) = Φ(s)

‖Φ(s)‖ ,
which gives rise to the kernel

K̃(s, t) =
K(s, t)√
Ks, sKt, t

.

3 Implementation

The computational complexity for the SSK can be
reduced to O(n|s||t|) using the recursive definition
from the previous section; space complexity is of or-
der O(|s||t|). While this is much faster than explicit
computation of feature vectors, it is still too slow
for learning SVM classification on datasets with a
thousands of long documents. Approximations of
the SSK can be used to tackle down this issue.

3.1 TRIE

So far we were searching for all the substrings in the
document giving higher weight to more contiguous
ones. Because weight of a substring is dropping
exponentially with its length (weight equals λl(s))
and hence longer substrings add less to the features,
we can limit search only to substrings of length less
than m.

TRIE [4] comes from words retrieval tree. It de-
fines a tree where all edges have labels from alpha-
bet Σ. One can than view paths between root and
leaves as strings composed of labels on edges. The
leaves of a tree of depth n, built from substrings
of length less than m from document s, are exactly
the components of feature vector Φ(s). Simulta-
neous building of tree for s and t can be done in
O((|s|+ |t|)mm−n) time because most components
can be early detected as non perspective. This
method is faster than the one following from re-
cursive equations in all cases where m−n is small.

3.2 Dimension Reduction

The approach here is to find a lower dimensional
subspace of the feature space, that captures enough
information about them, and to project feature
vectors into this subspace [2]. The projected vec-
tors obtained this way can than be explicitly calcu-
lated and used as approximation for feature vectors.
Since the approximated vectors are explicitly calcu-
lated, the linear versions of learning algorithms can
be used and this usually adds another speed-up.

The first step of the approach is to choose the
orthogonal basis which will define the subspace.
Let k be the dimension of the subspace. Than
the basis S = {si|i = 1, . . . , k} consists of the k
most frequent continuous substrings of length n
from dataset. The elements of S are orthogonal

by the definition of kernel Kn. Feature vectors
projected into subspace spanned by basis S are
P (s) = (Kn(s, s1), . . . ,Kn(s, sk)). Evaluation of
Kn(s, si) is fast since length of si is only n.

3.3 Incomplete Cholesky Decompo-
sition

On a fixed set of documents, kernel function can
be also given as a matrix with elements being
Gij = Kn(si, sj). This matrix is called Gram ma-
trix, note that G is positive-definite matrix. In or-
der to calculate Gram matrix 1

2n(n+1) evaluations
of kernel function are necessary. To speed up the
computation of G we could use only an approxi-
mation for it, for which less evaluations would be
necessary.

Cholesky decomposition of positive-definite ma-
trix is G = V T V where V is upper triangular. Let
X be a matrix with feature vectors as columns.
Gram matrix can than be written as G = XT X.
QR decomposition of X can be obtained by doing
Gram-Schmidt on the columns of X. Let X = QR
where Q is orthogonal (QT Q = I). Than

G = XT X = (QR)T (QR) = RT (QT Q)R = RT R.

From V and R being upper triangular and Cholesky
decomposition being unique follows V = R.

By doing only k steps of Gram-Schmidt we ob-
tain only first k rows of R, G̃ = RT R can now be
used as approximation of G. This approximation
can be improved by carefully choosing the vectors
for each step of Gram-Schmidt: at each step the
vector with the highest residual norm is chosen. It
is important to note that all this operation can be
done without explicitly using feature vectors. The
number of evaluations of kernel function depends
on the number of calculated rows of R.

4 Extentions

Syllables or words instead of characters In-
stead of looking at documents as a succession of
characters they can be viewed as a succession as
syllables or words. One important advantage of us-
ing syllables or words is document length reduction.
When using syllables the advantage of detecting
similarities between words with different prefixes or

suffixes still remains, while using words this prop-
erty is lost. The difficult part here is in breaking
words into syllables.

Convex Combination of Kernels By using the
property that convex combination of kernel func-
tions is again a kernel function we can get new
kernel functions. In case of string kernels we can
combine kernel functions Ki of different lengths i.
While calculating Kn (using recursion I mentioned
upper), values of Ki for i = 1, . . . , n − 1 are ob-
tained as intermediate results. These results can
be used to form convex combinations without ex-
tra computational cost.

Weights Instead of using same weight λ for all
symbols, each symbol (character, syllable, word) x
can be assigned different weight λx. In this way we
can introduce prior knowledge into this model and
put accent on certain symbols. This extension can
be added with few simple changes of recursive com-
putation of Kn and it does not increase complexity.

Soft-Matching Besides matching only equal
symbols, we can also match similar symbols with
adding extra factor to ensure that soft matches get
lower weight. When words are used as symbols
this can be used to incorporate synonyms into the
model. For example: with help of WordNet syn-
onym words can be matched. This extension can
also be added to recursive computation of Kn with-
out extra computational cost, although finding soft
matches alone can be expensive.

5 Experiments
The following results are taken from [3]. String,
Syllables and Words kernel were compared to
BOW with TF and TFIDF vectors. The task
was to correctly classify documents into categories.
The experiments were performed on Reuters-21578
dataset and SVM was chosen as a classification
method. Gram matrixes were calculated for a sub-
set of 1000 documents with n = 3 for all kernels.
This took 150 minutes for String, 30 minutes for
Syllables and 15 minutes for Word kernel. Two
tests were made on this subset. First 300 docu-
ments were used for training and the remaining 700
for testing. In second experiment 600 documents

were used for training and the remaining 400 for
testing.

CE F1 NSV Time
[%] [%] [min]

String Kernel 15 87 184 208
Syllable Kernel 12 89 218 29
Word Kernel 18 85 157 9
BOW (TF only) 18 84 150 1/6
BOW (TFIDF) 8 93 252 1/6

Table 1: Results for text categorisation with svm
(CE – Classification error, NSV - Number of Sup-
port Vectors)

CE F1 NSV
[%] [%]

String Kernel 3 97 305
Syllable Kernel 4 97 379
Word Kernel 3 97 281
BOW (TF only) 3 97 287
BOW (TFIDF) 4 97 443

Table 2: Results for text categorisation with svm
(CE – Classification error, NSV - Number of Sup-
port Vectors)

The next experiment represents a comparison
between two approximation techniques: Dimen-
sion Reduction (DR) and Incomplete Cholesky De-
composition (ICR). The speed and performance of
trained classifier are compared. The training set
consisted of 1000 documents and testing was done
on 200.

Prec [%] Rec [%] Time [sec]
TFIDF 95 97 24
DR (1500) 87 90 24
DR (2500) 87 91 48
DR (3500) 89 91 64
ICD (200) 86 92 49
ICD (450) 88 92 114
ICD (750) 90 94 244

Table 3: Comparison of approximation techniques.

References
[1] T. Joachims. Making large-scale svm learn-

ing practical. In B. Scholkopf, C. Burges,
and A. Smola, editors, Advances in Ker-
nel Methods - Support Vector Learning. MIT-
Press, 1999.

[2] H. Lodhi, C. Saunders, J. Shawe-Taylor,
N. Cristianini, and Watkins C. Text classifica-
tion using string kernels. Journal of Machine
Learning Research, (2):419–444, 2002.

[3] C. Saunders, H. Tschach, J. and Shawe-Taylor,
(2002) Syllables and Other String Kernel ex-
tensions. In Proceedings of Nineteenth In-
ternational Conference on Machine Learning
(ICML ’02)

[4] J. Shawe-Taylor, N. Cristianini. Kernel Meth-
ods for Pattern Analysis. Cambridge Univer-
sity Press, 2004

