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ABSTRACT 
 

Web search engines  collect data from the Web by 
“crawling” it – performing a simulated browsing of the web 
by extracting links from pages, downloading all of them and 
repeating the process ad infinitum. This process requires 
enormous amounts of hardware and network resources, 
ending up with a large fraction of the vis ible web1 on the 
crawler’s storage array.  But when only information about a 
predefined topic set is desired, a specialization of the 
aforementioned process called “focused crawling” is  used. 
What follows here is a shor t review of existing techniques 
for focused crawling. 
 
 
1. Introduction 

 
The Web in many ways simulates a social network: links 

do not point to pages at random but reflect the page authors’ 
idea of what other relevant or interesting pages exists. This 
information can be exploited to collect more on-topic data by 
intelligently choosing what links to follow and what pages to 
discard. This process is called “focused crawling”. 

 
 

 
Figure 1 

                                                 
1 “Visible web” is the part of the Web that can be accessed 
by only following the links. The vast majority of the 
structured information is however only accessible through 
constructing and submitting appropriate queries through 
web forms. 

 
 Figure 1 shows a structure of a simple focused crawler. 
The crawler is usually started with a set of seed pages that 
indicate the type of content the user is interested in and 
provide the initial links. These pages are put in a priority 
queue and are subsequently downloaded. Download 
manager must enforce several constraints including 
download speed and rate of retrieved pages that are located 
on a single host and domain while still trying to comply with 
URL priorities  set by the rest of the system. That way slow 
remote servers and links are not overloaded by requests. 
Retrieved pages are then evaluated for topic relevance. This 
process may range from a simple keyword matching to 
complex machine learning classification schemes. Hyperlinks 
found on pages are extracted and ran through a filter. One 
possible reason for link to be omitted fro m the crawl is a 
presence of ‘do not follow’ META tag on the source page. 
It is also possible for the webmaster to specify parts of the 
site not to be indexed. Compliance with this so called 
‘Robots Exclusion Protocol’ is not mandatory and can be 
administratively overridden on the crawler. The crawler 
administrator can also specify a list of pages and sites to be 
excluded from the crawl – for example to avoid infinitely 
large automatically generated crawler traps. 
 The next step is to predict the usefulness of following 
each link based on information seen so far and enqueueing 
it. Gathered pages can then be postprocessed and possibly 
the prediction model updated with new information. A non-
focused crawler lacks the components marked with a dashed 
rectangle. 
 Focused crawlers are usually evaluated by “harvest 
rate” which is the ratio between number of relevant and all 
of the pages retrieved. “Loss rate” is then equal to 1 minus 
harvest rate. 
 A page from which a link was extracted is called a 
‘parent page’ and the one to which the link points is a ‘child 
page’ or a ‘target page’. 
 
 
2. Crawling without external help 
 



 

Some early work on the subject of focused collection of 
data from the Web was done by [DeBra94] in the context of 
client-based search engines . Web crawling was simulated by 
a “group of fish” migrating on the web. In the so called “fish 
search” each URL corresponds to a fish whose survivability 
is dependant on visited page relevance and remote server 
speed. Page relevance is estimated using a binary 
classification (the page can only be relevant or irrelevant) by 
a means of a simple keyword or regular expression match. 
Only when fish traverse a specified amount of irrelevant 
pages they die off - that way information that is not directly 
available in one ‘hop’ can still be found. On every document 
the fish produce offspring – its number being dependant on 
page relevance and the number of extracted links . The school 
of fish consequently ‘migrates’ in the general direction of 
relevant pages which are then presented as results. Starting 
point is specified by the user by providing ‘seed’ pages that 
are used to gather initial URLs. URLs are added to the 
beginning of the crawl list which makes this a sort of a depth-
first search. 
 

[Hersovici98] extends this  algorithm into “shark-search”. 
URLs of pages to be downloaded are prioritized by taking 
into account a linear combination of source page relevance, 
anchor text and neighborhood (of a predefined size) of the 
link on the source page and inherited relevance score. 
Inherited relevance score is parent page’s relevance score  
multiplied by a specified decay factor. Unlike in [DeBra94] 
page relevance is calculated as a similarity between 
document and query in vector space model and can be any 
real number between 0 and 1. Anchor text and anchor context 
scores are also calculated as similarity to the query. 

 
[Cho98] propose calculating the PageRank [Page98] 

score on the graph induced by pages downloaded so far and 
then using this score as a priority of URLs extracted from a 
page. They show some improvement over the standard 
breadth-first algorithm. The improvement however is not 
large. This may be due to the fact that the PageRank score is 
calculated on a very small, non-random subset of the web 
and also that the PageRank algorithm is too general for use in 
topic-driven tasks [Menczer01, Menczer02]. 

 
 

3. Crawling with the help of background knowledge 
 

[Chakrabarti99] use an existing document taxonomy (e.g. 
pages in Yahoo tree) and seed documents to build a model 
for classification of retrieved pages into categories 
(corresponding to nodes in the taxonomy). The use of a 
taxonomy also helps at better modeling of the negative class: 
irrelevant pages are usually not drawn from a homogenous 
class but could be classified in a large number of categories 
with each having different properties and features. In this 
paper the same applies for the positive class because the 

user is allowed to have interest in several non-related topics 
at the same time. The system is built from 3 separate 
components: crawler, classifier and distiller. The classifier is 
used to determine page relevance (according to the 
taxonomy) which also determines future link expansion. Two 
different rules for link expansion are presented. Hard focus 
rule allows expansion of links only if the class to which the 
source page belongs with the highest probability is in the 
‘interesting’ subset. Soft focus rule uses the sum of 
probabilities that the page belongs to one of the relevant 
classes to decide visit priority for children; no page is 
eliminated a priori. Periodically the distiller subsystem 
identifies hub pages (using a modified hubs&authorities 
algorithm [Kleinberg98]). Top hubs are then marked for 
revisiting. 

Experiments show almost constant average relevance of 
0.3 – 0.5 (averaged over 1000 URLs). Quality of results 
retrieved using unfocused crawler almost immediately drops 
to practically 0. 
 

In [Chakrabarti02] page relevance and URL visit 
priorities are decided by separate models. The model for 
evaluating page relevance can be anything that outputs a 
binary classification, but the model for URL ranking (also 
called “apprentice”) is on-line trained by samples consisting 
of source page features and the relevance of the target page 
(that kind of information is of course available only after 
both the source and the target page have been downloaded 
and the target page evaluated for relevance). For each 
retrieved page, the apprentice is trained on information from 
baseline (in this case the aforementioned taxonomy model) 
classifier (i.e. with what probability does the parent page 
belong to some class) and features around the link extracted 
from the parent page - to predict the relevance of the page 
pointed to by the link. Those predictions are then used to 
order URLs in the crawl priority queue. Number of false 
positives is shown to decrease significantly – between 30% 
and 90%. 

 
[Ehrig03] consider an ontology-based algorithm for 

page relevance computation. After preprocessing, entities 
(words occurring in the ontology) are extracted from the 
page and counted. Relevance of the page with regard to 
user selected entities of interest is then computed by using 
several measures on ontology graph (e.g. direct match, 
taxonomic and more complex relationships). The harvest rate 
is improved compared to the baseline focused crawler (that 
decides on page relevance by a simple binary keyword 
match) but is not compared to other types focused crawlers. 

 
[Bergmark02] describe modified ‘tunneling’ 

enhancement to best-first focused crawler approach. Since 
relevant information can sometimes be located only by 
visiting some irrelevant pages first and since the goal is not 
always to minimize the number of downloaded pages but to 



 

collect a high-quality collection in a reasonable amount of 
time they propose to continue crawling even if irrelevant 
pages are found. With statistical analysis they find out that a 
longer path history does have an impact on relevance of 
pages to be retrieved in future (compared to just using the 
current parent pages relevance score) and construct a 
document distance measure that takes into account parent 
page’s distance (which is in turn based on its parent page’s  
distance etc). 

 
 

4. Other approaches 
 

[Angkawattanawit02] deal with improving recrawling 
performance by utilizing several databases (seed URLs, topic 
keywords and URL relevance predictors) that are built from 
previous crawl logs and used to improve harvest rate 
(percent of relevant pages retrieved). Seed URLs that will be 
used for future recrawls are computed using BHITS 
([Bharat98]) algorithm on previously found pages - by 
selecting pages with high hub and authority scores . 
Keywords indicative for the target topic  are extracted from 
title and anchor tags of previously found relevant pages. 
Link crawl priority is then computed as a weighted 
combination of similarity of link anchor text to topic 
keywords, source page score and predicted link score. Link 
score prediction is based on previously seen relevance for 
that specific URL. 

 
[Aggarwal01] introduce a concept of “intelligent 

crawling” where the user can specify an arbitrary predicate 
(e.g. keywords, document similarity, … - anything that can be 
implemented as a function which determines documents 
relevance to the crawl based on URL and page content) and 
the system adapts itself in order to maximize the harvest rate. 
It is suggested that for some types of predicates the topical 
locality assumption of focused crawling (i.e. relevant pages 
are located close together) might not hold. In those cases the 
URL string, actual contents of pages pointing to the relevant 
one (not to be confused with the relevance of those pages!) 
or something else might do a better job at predicting 
relevance. A probabilistic model for URL priority prediction 
is trained using information about content of in -linking 
pages, URL tokens, short-range locality information (e.g. 
“parent does not satisfy predicate X but the  children does”) 
and sibling information (i.e. number of sibling pages 
matching the predicate so far).  
 
 
5. Use of search engines 
 

It is not necessary to use only the locally gathered data 
while crawling the web. Several attempts have been made to 
improve the harvest rate by utilizing search engines as a 
source of seed URLs and back-references, most notably 

[Diligenti00]. They try to solve the problem of “credit 
assignment” by using context graphs. It is pointed out that 
relevant pages can be found by knowing what kinds of off-
topic pages link to them. 

For each seed document a several layers deep graph is 
constructed that consists of pages pointing to that seed 
page. Because that information is not directly available from 
the web, a search engine is used to provide backward links. 
Graphs for all seed pages are then merged together and a 
classifier is trained to recognize a specific layer. Those 
predictions are then used to assign priority to the page. 

Other possibilities of using remote sources include 
querying an index search engine for a set of seed 
documents, for dynamically re-seeding the crawler with 
random relevant pages or for retrieving all of the URLs 
altogether by constructing appropriate queries as done in 
[Ghani01]. 
 
 
5. Conclusion 
 

The presented methods for focused crawling are not 
mutually exclusive and almost all of them can be 
incorporated into a unified framework for creatio n of 
focused corpora. Depending on the application needs 
however some of them are more appropriate than other. For 
a client-side data collection, extensive crawling can present 
a serious usability problem as it requires considerable 
amount of network resources and time. On the other hand 
collecting large corpuses of data imposes too much of a load 
on search engines and therefore requires more of a 
‘traditional’ focused crawling technique. 
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