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ABSTRACT 
 

This paper deals with the problem of machine learning on 
sets of documents connected into graphs. Our strategy is to 
represent each document by a diverse set of heterogeneous 
attributes, including traditional binary and categorical 
attributes, textual attributes, and attributes derived from the 
graphs. We present experiments on two datasets, showing 
the usefulness of graph-based attributes and the importance 
of weighting the different attributes suitably before learning. 
On the download estimation task, the approach presented 
here achieved the best results on the KDD Cup 2003 
challenge. 

 
1  INTRODUCTION 
 

Traditionally, machine learning dealt with datasets where 
each instance is represented by a moderate set of numerical 
and/or categorical attributes. Recently, however, using 
machine learning techniques on other types of data has been 
attracting increasing amounts of attention. Among other 
things, machine learning has been applied to textual data, 
chiefly by the text categorization community. The growth of 
the World Wide Web and other social networks has also 
increased the interest in the analysis of data organized in 
graphs (in the graph-theoretic sense).  

In this paper we present two case studies of datasets that 
lie at the intersection of these various interests. The datasets 
consist of documents that contain text, are additionally 
described with traditional attribute data, and are also 
connected in one or more graphs. The challenge here is to 
improve the success of machine learning techniques on 
these datasets by combining these different types of 
attributes. 

 
2  THE KDD CUP DOWNLOAD ESTIMATION TASK 
 

KDD Cup is an annual data mining challenge, organized in 
connection with the ACM SIGKDD conference. In 2003, one 
of the challenges involved estimating the interest generated 
by scientific papers, as measured by the number of times that 
a paper was downloaded from a web server. 

The dataset consisted of 29014 papers from the “high 
energy physics — theory” area of arXiv.org, a well-known 
repository of preprints. Apart from the full text of all papers 

(in TeX format), some more structured metadata was also 
available for each paper: title, author names, journal in which 
the paper was subsequently published (if any), etc. 
Additionally, the citation graph for this set of papers was 
provided. The graph has one vertex for each paper, and an 
edge whenever one paper cites another. (Citations pointing 
outside the dataset, and those pointing inside from papers 
outside the dataset, are not recorded in this graph.) 

For papers that were published in the arXiv during a 
“training period” of 6 months (1566 papers), we were also 
provided with the number of times that each paper was 
downloaded from arXiv’s web server. Only downloads in 
the first 60 days since publication were included in these 
counts. In addition to the number of downloads, timestamps 
of individual downloads were also provided. 

The task is to predict the number of downloads (in the 
first 60 days since the publication of each paper) for the 
papers from a “test period”, covering 3 months. The 
measure used to evaluate the predic tions on the KDD Cup 
was the sum of absolute values of prediction errors; 
however, only the 50 most frequently downloaded papers 
from each month were taken into account (other papers and 
the predictions for them were ignored by this evaluation 
measure). Note that this is only approx. 20% of the papers 
(there are around 250 per month). 

It could be argued that this task definition is problematic 
from certain respects, for example in its focus on only the 
most frequently downloaded papers, and in the fact that the 
data available both to the learner and the predictor include a 
lot of material that is useful for our download estimation task 
but is not available when the paper is initially published in 
the archive (e.g. citations of the paper by other papers, or 
the name of journal in which it is eventually published). 
Thus, the task as defined here is somewhat unrealistic. 
However, the advantage of accepting this task definition is 
that we can compare our results with those of the other 
KDD Cup 2003 participants. 

 
3  OUR APPROACH TO THE  
    DOWNLOAD ESTIMATION PROBLEM 
 

According to the problem specification, only the (approxi-
mately) 20% most frequently downloaded papers will be 
used to evaluate our predictions. Of course, since we do 



 

now know in advance which papers these will be, we must 
submit predictions for all papers from the test period, but the 
predictions on papers other than the top 20% will be ignored. 
This means that it does not matter how wrong our 
predictions on these other papers are; it makes sense to 
focus solely on the top 20% of papers. 

One way to achieve this is to have our model treat each 
paper as if it belonged to the top 20%; if it doesn’t really 
belong to the top 20%, our prediction error may be greater, 
but this will not affect the evaluation of our predictions. To 
ensure that our model treats each paper as if it belonged to 
the top 20%, we will use only the most frequent papers to 
train the model. It wo uld be natural to use the top 20% of the 
papers from the training period, but experiments have shown 
that using slightly more training papers gives better results; 
thus we use 30% of the training set. 

We will represent each paper by a vector containing 
features from various sources (see the next section); then we 
will use support vector regression [1] to train a linear 
regression model for predicting the number of downloads. 
(We did not experiment with nonlinear SVM, mostly because 
experience in text categorization shows that nonlinear SVM 
performs only marginally better than linear SVM. Since our 
task also involves textual and high-dimensional data, we 
conjecture that the benefits of using nonlinear SVM may 
similarly be very small.)  

Most of our experiments focus on testing different 
combinations of features and different weights that can be 
applied to the various features before training. We use 10-
fold cross-validation (CV) on papers from the training period 
to compare these different representations. As mentioned in 
the previous paragraph, only the top 30% of the training 
papers are used to train the SVM regression model; during 
evaluation on the validation set, only the top 20% of the 
papers from the validation set are used. This ensures that the 
evaluation conditions are similar to what would later actually 
be used to evaluate our test period predictions. 

 
4  FEATURES USED IN THE 
    DOWNLOAD ESTIMATION PROBLEM 
 
4.1  Author, Abstract, Address 
 

For each paper, we know its abstract, which is typically one 
paragraph of text. We can use this to represent a paper using 
the well-known “bag of words” paradigm; that is, we 
introduce an attribute for each word that occurs in any of the 
abstracts; a paper is then represented as a vector of TF-IDF 
weights, in which each component gives the number of 
occurrences (or “term frequency”, TF) of the corresponding 
word in the abstract, multiplied by a value that is intended to 
reduce the influence of very common words (“inverse docu-
ment frequency”, IDF); finally this vector is normalized to 
unit Euclidean norm, to remove the influence of the 
document length. 

Similarly, we can represent a document using the 

authorship information. Although this has been originally 
provided in a human-friendly rather than machine-readable 
form, the data can be cleaned relatively easily and we can 
introduce one attribute for each author; then each document 
is represented by a vector of binary values in which each 
component tells if a particular person is one of the authors 
of this paper or not. It can also be beneficial to normalize 
these vectors before training. 

Another way in which we tried to use the textual 
information that has been provided about the papers was to 
try extracting the addresses of the institutions with which 
the authors are affiliated. We hoped that reputable institu-
tions employ better-known authors whose papers attract 
more downloads, and that therefore institution information 
would be useful in estimating the number of downloads. 
Since these institution names and addresses were not 
available to us in the files containing the abstracts and other 
metadata, we had to extract them directly from the TeX 
source of the papers (the extraction process relies on 
heuristics and is somewhat inaccurate, often extracting more 
text than would be necessary). 

Of course, one hopes that different representations will 
be useful on different papers and that therefore a combined 
representation might be more successful than any of the in-
dividual representations. Thus, if a document is represented 
by the vector (x1, …, xr) under one representation and by (y1, 
…, ys) under another, a combined representation may have 
the form (αx1, …, αxr, βy1, …,  βys), for some suitable weights 
α and β that can be used to balance the influence of 
different groups of attributes. 

                                             Average prediction error (cross-
validation) 
Representation training set  test set 
Author 63.66  146.38 
Abstract  62.46  149.28 
Address 80.60  154.06 

Abstract + Address 42.20  142.89 
Abstract + Author  37.62  135.70 
Address + Author 49.19  143.38 

Abstract + Address + Author 32.29  136.64 
1.2 Abstract + 0.6 Address + Author  31.56  134.70 

Table 1. The performance of various representations based on 
authors, abstracts, and institution addresses.  

Noting that the address information did not turn out to 
be useful (Table 1), we adopt the “author + abstract” repre-
sentation as the baseline for further experiments. 
 
4.2  Using the Citation Graph 
 

Although we are interested in the downloads that occur 
within the first 60 days since the publications of a paper in 
the arXiv, and in this time a paper typically does not yet 
have any citations, the citation graph may nevertheless be 
useful since, in the long term, important and influential 
papers obtain more citation, while in the short term, such 



 

papers might have been recognized by readers immediately 
upon publication, based on the title, abstract and authors, 
and might have therefore been downloaded more often. 
Thus, although the relationship between citations and the 
down load count as defined in our task is not causal, there 
may nevertheless be a correlation that could be used to 
improve the download estimation. 

We use the citation graph as a source of attributes in two 
ways. One is to compute numeric attributes describing the 
position of each paper as a node within the graph; in -degree 
and out -degree are obvious candidates, but we also 
experimented with hub and authority weights (based on 
Kleinberg’s HITS algorithm [2], which was originally 
designed to assess the importance of web pages based on 
the structure of the graph of hyperlinks between the pages), 
and with PageRank ([3], based on ideas similar to HITS). 
These experiments show that in-degree, authority weight and 
PageRank are helpful for download estimation, but since they 
are closely correlated, using two or three of them at the same 
time does not improve the results further. Similarly, out-
degree and hub weight are closely correlated, but they are 
not useful for download estimation; this is not surprising, as 
a paper is not likely to be interesting or important merely 
because it cites interesting and important papers (everybody 
cites those, after all). 

The other way of using the graph is to introduce one 
binary attribute inp for each paper p. In the vector describing 
a paper q, let the component q.inp equal 1 if p cites q, and 0 
otherwise. Analogously, we can define attributes that tell if q 
points to a certain other paper or not. These attributes are 
referred to as “in-links” and “out-links” respectively. 

Representation Average test error during cross-validation  

AA (= Abstract + Author, from previous section)  135.70  

AA + 0.004 in-degree  127.62  
AA + 0.055 authority  128.04  
AA + 0.2 PageRank  130.50  
AA + 0.1 out -degree  134.69  
AA + 0.09 hub  134.97  

AA + 0.9 in-links  131.87  
AA + 1.0 out -links  132.47  

AA + 0.004 in-degree + 0.8 in-links  125.28  
AA + 0.004 in-degree + 0.9 out -links  124.23  
AA + 0.005 in-degree + 0.5 in-links + 0.9 out -links  123.72  

Table 2. The performance of representations with graph-based 
features. 

It is worth noting that it is important to multiply these 
attributes with a suitable weight before training. For example, 
the average in -degree in our citation graph is approximately 
10, while the normalized TF-IDF vectors from the previous 
section have all components between 0 and 1 (mostly closer 
to 0). When these two representations are combined, the in-
degree will far outweigh the other attributes unless it is first 
multiplied by some small weight. 
 

4.3  Miscellaneous Statistics 
 

Journal information. For approximately 72% of papers, we 
know the jurnal where the paper has eventually been 
published. We can thus introduce a binary attribute for each 
journal, indicating whether a particular paper has been 
published there or not (additionally, there is one attribute for 
papers with no journal information).   

We also tried computing numeric attributes based on the 
journal information. For example, we can compute the 
average number of downloads over all papers from a journal, 
and then introduce an attribute that gives, for each paper p, 
the average number of downloads over all training papers 
published in the same journal as p. This might be promising 
as different journal do have different average download 
counts; however, variance within each journal is typically 
larger than these differences. It turned out that attributes of 
this type lead to overfitting and were not useful for our task. 

Title length . We observed that many of the most 
frequently downloaded papers have relatively short titles. 
Thus we used the number of characters and the number of 
words in the title as attributes. Similarly, we experimented 
with attributes giving the number of characters and number 
of words in the abstract, the number of authors, the year of 
publication, and the average length of title words. Most of 
these attributes were not useful, except for the title length in 
characters. 

Clustering . We clustered the papers into 26 clusters 
using recursive 2-means. We can intro duce a binary attri-
bute for each cluster, indicating whether a particular paper is 
a member of that cluster. We also tried  introducing attri-
butes such as the average number of downloads over all 
train ing papers from the same cluster as the paper under 
consideration. Another interesting attribute is the distance 
of the paper from the centroid of its cluster; this attribute 
was moderately helpful, suggesting that the number of 
down loads is slightly higher if the paper is nearer the cent-
roid (perhaps papers far from their cluster’s centroid lack a 
clear focus and a distinct audience?).  

Average prediction error    
Representation cross-validation on training set true test set 

Triv. model (predict training set median) 152.26 181.11 

Author + Abstract (AA) 135.86 155.38 
AA + 0.004 in-degree 127.69 146.77 
AA + 0.005 in-degree + 0.5 in -links + 0.8 out-links123.72 143.06 
previous + 0.25 journal 121.12 143.38 
previous + 0.004 title-characters  (*) 119.58 140.30 
(*) + 1.3 title-word-length 118.94 139.75 
(*) + 0.9 title-word-lenth + 0.1 (year – 2000)  (**)118.81 138.69 
(**)+ 0.7 cluster-median + 0.35 clus. centroid dist.117.23  137.81 

Our submission on KDD Cup 2003 118.89 141.60 
Second best entry on KDD Cup 2003  146.34 
Third best entry on KDD Cup 2003  158.39 

Table 3. Performance of different representations on the download 
estimation problem. “True test set” refers to the 150 papers that 
were actually used for evaluation by the KDD Cup 2003 organizers. 



 

Our KDD Cup submission is slightly worse than the best model 
reported above, because we introduced some features only after the 
KDD Cup deadline. The high test set errors are due to a single outlier 
in the true test set. 

 
5  PREDICTING THE INCOME OF FILMS  
 
5.1  Task Description 
 

To test the methodology described above on some other 
dataset besides the KDD Cup 2003 download estimation 
task, we defined another similar dataset based on the Internet 
Movie Database (IMDB). The database currently contains 
information about more than 300000 movies, including data 
such as titles, actors, directors, genres, plot summa ries, 
taglines (short slogans used to advertise the movie), etc. 
However, it has to be emphasized that not all of these types 
of data are available for all the movies. Additionally, several 
relations are defined on this set of movies, which implicitly 
define graphs similar to the citation graph we’ve seen in the 
download estimation tasks. Examples of these relations 
include “is a sequel of”, “is a spoof of”, “is a re make of”, and 
the most populous and interesting “references” (described 
by IMDB as “dialogue or situations in the former [movie] 
reference or pay homage to the latter”). Some of the data in 
IMDB also refers to the business and commercial aspects of 
films; in particular, the gross income from the screenings of 
the film in the U.S. is known for 3163 movies. We decided to 
try predicting this gross income, as it would form a problem 
similar to the download estimation task (in both cases the 
predicted value is essentially a kind of short-term popularity 
that can often be closely related to marketability and hype).  

The structure of our experiments is similar to that of the 
download estimation experiments. We focused on films from 
the period 1980–2003 (2588 films), using the period 1980–1995 
for training and 1996–2003 for testing. 
 
5.2  Attributes used 
 

Due to space consid erations, we cannot present these 
attributes in as much detail as in the download estimation 
task. We used binary attributes to represent individual actors 
and directors; each attribute specifies if that person 
participated in the making of a movie or not. (We also tried 
introducing similar attributes for producers, scriptwriters and 
special-fx people, but they were not useful.) Year of 
production is a problematic attribute in our task, because the 
test period covers different years than the training period; 
thus, whatever we could learn about individual years from 
the training set will be useless on the test set. 

Most movies also mention one or two genres to which 
they belong; thus, binary attributes for individual genres can 
be introduced. Similar to the case of journals for download 
estimation, there are considerable differences in average 
income between genres but also even greater variance within 
each genre; thus, these attributes are not useful.  

We also worked with several groups of textual attributes , 

all based on the “bag of words” approach: title words, 
tagline, plot summary, user comments. Note that treating 
user comments as bags of words are quite problematic, as 
many comments praise some aspects of a film but criticize 
others, and in the resulting bag both “positive” and 
“negative” words will be mixed indiscriminately. 

The relations between films, mentioned in the previous 
subsection, can be seen as forming 16 directed graphs. At-
tributes that can be derived from these graphs again include 
in- and out-degrees, hub and authority values, and binary 
attributes indicating who are the neighbors of a vertex. 

The results of these experiments are shown in table 4. 

Average prediction error  [M$]  
Representation training set  test set 

Triv. model (predict t raining set median) 17.67  17.68 

Actors 13.41  16.37 
Actors + 9 directors 10.47  15.46 
Actors + 9 directors + 0.5 country   (*)  10.12  15.31 
(*) + 1.5 tagline                               (**) 10.06  15.12 
(**) + 0.14 out -degrees 8.20  13.30 
(**) + 0.05 hub-weights 8.25  13.48 
(**) + 0.14 out -degrees + 3 out-links 7.30  13.03 
(**) + 0.05 hub-weights + 3 out-degrees  7.38  12.94 

Automated tuning of all parameters 8.12  12.51 

Table 4. Performance of different representations on the IMDB 
problem. 

 
6  CONCLUSIONS AND FUTURE WORK 
 

We have presented  two case studies exploring the issues of 
combining binary, categorical, textual and graph-based 
attributes for regression problems on datasets consisting of 
sets of documents connected in graphs. In both cases we 
saw that although the problems are hard and even the best 
models found so far still have relatively high prediction 
errors, we have nevertheless achieved considerable improv-
ements relative to the naïve baseline models with constant 
predictions. Much of this is due to the combined effects of 
several small improvements in performance that have been 
contributed by various individual attributes and groups of 
related attributes. We saw that appropriate weighting of 
attributes can be very important to allow the representation 
to be used to its best potential. Graph-based attributes have 
been found to be very useful on both datasets. 

This work could be extended in many interesting ways. 
The download estimation task could be made more realistic 
by not allowing the predictor to use any information that is 
not available immediately upon publication of a paper. 
Various other attributes and external sources of information 
could be considered (for example: are downloads related to 
the dates of conferences, days of week, seasonal patterns, 
etc.?). Both the download estimation task and the movie 
income prediction task open up questions related to 
modeling popularity and modeling user decisions (what is 
the reader thinking when deciding whether to download a 



 

paper or not?). Normalization and standardization of attri-
butes could be investigated as potentially useful alternatives 
to the weighting as used in our experiments. Different 
schemes for choosing the weights of attributes or attribute 
groups could be considered. 
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