

A Rule based Approach to
Word Lemmatization

Joël Plisson, Nada Lavrac, Dunja Mladenic

Department of Knowledge Technologies
Jožef Stefan Institute

Jamova 39, 1000 Ljubljana, Slovenia
e-mail: joel.plisson@ijs.si

ABSTRACT

Lemmatization is the process of finding the normalized form
of a word. It is the same as looking for a transformation to
apply on a word to get its normalized form. The approach
presented in this paper focuses on word endings: what word
suffix should be removed and/or added to get the normalized
form. This paper compares the results of two word
lemmatization algorithms, one based on if-then rules and the
other based on ripple down rules induction algorithms. It
presents the problem of lemmatization of words from
Slovene free text and explains why the Ripple Down Rules
(RDR) approach is very well suited for the task. When
learning from a corpus of lemmatized Slovene words the
RDR approach results in easy to understand rules of
improved classification accuracy compared to the results of
rule learning achieved in previous work.

1 INTRODUCTION

Lemmatization is an important preprocessing step for many
applications of text mining. It is also used in natural
language processing and many other fields that deal with
linguistics in general. It also provides a productive way to
generate generic keywords for search engines or labels for
concept maps.

Lemmatization is similar to word stemming but it does not
require to produce a stem of the word but to replace the
suffix of a word, appearing in fre e text, with a (typically)
different word suffix to get the normalized word form. For
instance, the suffixes of words working, works, worked
would change to get the normalized form work standing for
the infinitive: work; in this case, both the normalized word
form and the word stem are equal. Sometimes the normalized
form may be different than the stem of the word. For
example, the words computes , computing , computed would
be stemmed to comput, but their normalized form is the
infinitive of the verb: compute.

A lot of work has been carried out in word lemmatization and
stemming, particularly for English, e.g., the well-known
Porter stemmer [1]. But except for few research prototypes

[2, 3] no algorithm is readily available for lemmatization of
Slovene words. The main difficulty of word lemmatization of
Slovene is that Slovene is a highly inflected natural
language, having up to 30 different word forms for the same
normalized word.

The paper proposes a novel word lemmatization algorithm,
inspired by well known Ripple Down Rule (RDR) induction
algorithms [4, 5]. By focusing on word endings the induced
rules determine which word suffix should be removed
and/or added to get the normalized form of a word.

The RDR learning algorithm can be applied to a lexicon of
words in which normalized forms have been defined. The
algorithm is not biased to Slovene; it could be applied to
lexicons of English words or words in other languages
without modifications. Once the lemmatization rules have
been learned, the rules can be used as a classifier for
unseen words for which a normalized form needs to be
generated. Moreover, the rules can be applied to
lemmatizing words in a free text, after having transformed
the text into a list of words.

The paper presents the problem of lemmatization of words
from Slovene free text and explains why the Ripple Down
Rules (RDR) approach is very well suited for the task,
showing that on the task of learning from a corpus of
lemmatized Slovene words the RDR based approach results
in easy to understand rules of improved classification
accuracy compared to the results of rule learning achieved
in previous work. Section 2 defines the problem of
lemmatization of words from Slovene free text. Section 3
explains why Ripple Down Rules are appropriate for solving
this problem. The data and the experimental setting are
presented in Section 4 and the results of experiments in
Section 4.3. The paper concludes with a discussion and
plans for further work.

2 DESCRIPTION OF THE PROBLEM

To understand how lemmatization works, one should know
how different forms of a word are created. Most of the
words change when they are used in different grammatical

forms. The ending of the word is replaced by a grammatical
ending and this leads to a new form of the initial word.

When we refer to a verb in general, we usually use its
normalized form as in the verb walk . We then add
inflections to the normalized form as required. These
inflections indicate the tense. The “s” inflection indicates
the present tense, and the “ed” inflection indicates the past
tense. Thus there would be one rule for each tense covering
most of the cases and then one could add exceptions as it is
usually done in the grammar of all natural languages.

Lemmatization will be the inverse transformation:
replacement of the grammatical ending by the initial suffix.
Consequently, we define lemmatization in the same way as
defined in [2], as a replacement of a suffix (the grammatical
ending) by another suffix (the ending of the normalized
word).

2.1 Lemmatization as substitution of suffixes

The grammatical ending usually depends on the word
ending. It means that two words with different endings will
not have the same grammatical ending, even if they are used
in the same grammatical form.

For example, the words property and train will not receive
the same grammatical ending even if they are both used in
their plural form. Property will lose its “y” and receive a
suffix “ies” to become properties while train will receive the
suffix “s” and change to trains. And this is also true when
we try to recover the normalized form. The grammatical
ending will inform us about the ending of the normalized
form. The suffix “ies” of the word properties indicates that
the normalized form ends with a “y”. In the proposed
approach to word lemmatization, the idea is to create rules to
recover the initial suffix from the grammatical ending.

2.2 Lemmatization as a machine learning problem

As proposed in [2], each word is labeled by a class label,
that represents the transformation that should be applied to
get the normalized form of the word. To determine this class,
a stem should be found first. It is the part the two words (the
word and its normalized form) have in common. The words
property and properties have both the stem “propert” in
common. Or in Slovene, the words “BRESKEV” and
“BRESKVAH” have “BRESK” in common. Then we can see
that we should remove the suffix “VAH” from
“BRESKVAH” and add the suffix “EV” to get the normalized
form “BRESKEV”. Thus we assign the class label
“VAHtoEV” to the word “BRESKVAH”. Our training set is
made of words with their suffixes and class labels.

Let us now explain the selected class label form. The class
label assigned to a word is defined by giving the
transformation to be applied on the word in order to get the

normalized form. The transformation is given in the form of
map S1 to S2 (S1toS2), where S1 is a suffix of the word and
S2 is a suffix of the normalized word. The class label “_to_”
means that the word does not change.

As the grammatical endings for words may have different
lengths, in our approach words are divided into suffixes of
up to n letters, where n is the size of the word. For instance,
the word “BRESKEV” is represented by the following
sample: “V” “EV” “KEV” “SKEV” “ESKEV” “RESKEV” with
the class value: “_to_”.

3 RIPPLE DOWN RULE APPROACH

Initially, Ripple Down Rules (RDRs, [4, 5]) have been
developed for knowledge acquisition and maintenance of
rule-based systems. In knowledge acquisition and
incremental rule learning, it is often hard to add new rules
and certify that the adding of a rule will not cause the
inconsistency of the rule base, causing the existing rules to
perform badly in new classification tasks.

As opposed to standard classification rules, induced by
usin g a covering algorithm for ruleset construction (such as
AQ [6], CN2 [7] and ATRIS [8]), Ripple Down Rules create
exceptions to existing rules, so that the changes are
confined to the context of the rule and will not affect other
rules. Ripple Down Rules resemble decision lists [9] which
induce rules of the form “if-then-else”, as new RDR rules
are added by creating except or else branches to the
existing rules. If a rule fires but produces an incorrect
conclusion then an except branch is created for the new
rule. If no rule fires then an else branch is created for the
new rule. Take a simple Ripple Down Rule:

if a ^ b then c
except if d then e

else if f ^ g then h

The rule is interpreted as “if a and b are true then we
conclude c unless d is true. In that case we conclude e. If a
and b are not true then we continue with the other rule and
conclude h, if f and g are true.” This rule form fits very well
the problem of lemmatization.

To create an exception to a rule, the algorithm should first
recover the word that induced the rule that fired. Then the
differences between the two words are calculated. The
conditions of the exception rule will correspond to these
differences. Suppose that the current rules that the
algorithm has constructed are the following:

if A then _to_ because of MINA
else if H then VAHtoEV because of BRESKVAH
endif

and that the new word “BRESKVAMA” is presented to the
algorithm, then a new rule will be added as follows:

if A then _to_ because of MINA

except if VAMA then VAMAtoEV because of
BRESKVAMA

end except
else if VAH then VAHtoEV because of BRESKVAH
endif

The grammar of a language is made of rules that cover
almost all examples and some exceptions to these rules. For
example, in English, there would be a rule that says: the
suffix “ed” is added to every verb when used in the past
tense and some exception rules would be: unless the verb
ends with a “y”, the suffix “ied” is added. All the auxiliary
verbs are exceptions to the rule of the “ed” suffix as well.
Therefore we need a system that first creates the most
general possible rules and then adds exceptions for more
specific cases.

4 EXPERIMENTS

4.1 The data

Five datasets taken from [2], were obtained as random
samples of different size taken from a large hand-
constructed lexicon MULText -EAST [10]. The whole lexicon
contains about 20 000 different normalized words with listed
different forms for each of them resulting in about 500 000
different entries (potential learning examples). For each word
its normalized form is provided and additionally, the word is
annotated by some information about the word form such as
singular/plural, noun/verb/adjective, etc. Since our
motivation is to develop an approach that can be used on
any text in the selected natural language and this additional
information is not readily available in the usual texts, we are
not using it here. However, one can argue that if a language
tagger is available and the text is in the appropriate form to
apply it, this additional information could be very valuable.

4.2 The experimental setting

We have done different experiments to expose the ability of
Ripple Down Rules to perform lemmatization. We used the
datasets presented before to provide a comparison with
classification rules induced by the ATRIS rule induction
algorithm [8, 2]. The five original datasets, used in [2],
contain 160, 920, 1890, 3820, 5720 samples randomly taken
from the lexicon, respectively.

For each of the five datasets, we report results of
classification accuracy achieved in 5-fold cross-validation,
where we used exactly the same examples. We used subsets
of the whole labeled data set split randomly into 5 folds. The
whole training-testing loop was thus repeated five times,
with each of the five subsets being excluded from training
and used as testing exactly once (cross-validation).

4.3 Results of experiments

The results of all experiments reported in this section are
shown in Figure 1 and Table1.

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

160 920 1890 3820 5720

Number of samples

A
cc

u
ra

cy

RDR

ATRIS

ATRISseq

Figure 1: Results of 5-fold cross-valdation for each of the
five datasets having different number of samples.

 Original
approach

Sequential
modeling

ATRIS 62.6 ± 0.07 72.8 ± 0.7
RDR 77.0 ± 0.6 77.0 ± 0.6

Table 1: Classification accuracy with 5-fold cross-
validation on dataset with 5720 samples.

The samples were presented to the algorithm in a random
order. As in previous work using ATRIS, we can see
(Figure 1) that the variation in the performance on different
sample sizes was small, after having included at least 2000
examples. For the same maximal number of samples
presented, RDR achieved 77.0% accuracy. We can attribute
this improvement to the construction of the general rules
first and then of more specific rules. It seems that we can
cover more examples with less training. That is why we get
better accuracy even with fewer examples presented. The
improvement may be also attributed to the construction of
RDR where we keep all the cases covered by the rules in
order to build reliable exceptions.

When looking at the results of previous work [2], we see
that the best accuracy is obtained when using Sequential

modeling [11]. Sequential modeling is used to preformat the
training data in order to get words grouped according to
their last letter. Then rules are generated for each group of
words with the same ending. Namely, instead of taking all
the training examples with 486 different class values, a one
level decision tree (decision stump) is generated that divides
the examples into subsets depending on the last letter in the
word. In this way the problem is decomposed into 20
independent subproblems, each having between 1 and 40
class values (most of the subproblems have less than 10
class values) instead of 486 class values.

We should note that the architecture of the rules induced by
our algorithm already handles sequential modeling because
rules are based on suffixes with increasing lengths, which
means that the first rules are always based on the last letter
only. Thus we get exactly the same results for the two
experiments.

5 DISCUSSION

The experiments have confirmed that the architecture of
Ripple Down Rules is appropriate for the problem of
lemmatization. We believe that these results may be
improved by using grammatical information about the words
as is done in [3] whose results are better (92%) but they are
using much more (grammatical) information and they are
learning separate rules for verbs, nouns, adjectives, ... As
the training and testing conditions are not the same, the
results are not comparable and our goal was to improve the
accuracy on free text without any grammatical information.
Hence, we are only able to compare the results of RDR with
the results previously achieved by the ATRIS rule learner,
using the same experimental setting. But as we expect the
creation or improvement of taggers for Slovene, grammatical
information will become more and more available and
valuable. Then the creation of a new system capable of
creating more precise rules for Slovene will be possible. We
also expect to obtain rules with a strong linguistic meaning,
where the grammar will be presented clearly, just as the
grammatical rules of a language usually are. The goal is to
create a system for both lemmatization performance and
linguistic knowledge extraction.

Acknowledgements

This work was supported by the PASCAL 6FP Network of
Excellence on Pattern Analysis, Statistical Modelling and
Computational Learning and AVLIS 6FP STREP project on
Superpeer Semantic Search Engine. The authors are grateful
to Toma ž Erjavec and Sašo Džeroski for the discussions on
the topic of this paper. Tomaž Erjavec also provided the
MULText -EAST lexicon used as a source of training
examples in the experiments with RDR.

References

[1] M. Porter. An Algorithm for Suffix Stripping. Proc.
ACM SIGIR Conference on Conference on Research
and Development in Information Retrieval. 1980.

[2] D. Mladenic. Learning Word Normalization Using Word
Suffix and Context from Unlabeled Data. Proc. ICML.
2002.

[3] S. Džeroski, T. Erjavec. Machine Learning of
Morphosyntactic Structure: Lemmatising Unknown
Slovene Words. Applied Artificial Intelligence. 2004.

[4] A. Srinivasan, P. Compton, R. Malor, G. Edwards, C.
Sammut, L. Lazarus. Knowledge Acquisition in Context
for a Complex Domain. Proc. European Knowledge
Acquisition Workshop. Aberdeen. 1991.

[5] Y. Mansuri, J. G. Kim, P. Compton, C. Sammut. An
evaluation of Ripple-Down Rules. Proceedings of the
IJCAI'91 Knowledge Acquisition Workshop Pokolbin.
1991.

[6] R. S. Michalski, I. Mozetic, J. Hong, N. Lavrac. The
multi-purpose incremental learning system aq15 and its
testing application on three medical domains. Proc. of
the 5th National Conference on Artificial Intelligence.
1986.

[7] P. Clark and T. Niblett. The cn2 Induction Algorithm.
Machine Learning . 1989.

[8] D. Mladenic. Combinatorial Optimization in Inductive
Concept Learning. Proc. of ICML. 1993.

[9] R. L. Rivest. Learning Decision Lists. Machine
Learning . 1987.

[10] T. Erjavec. The multext -east Slovene Lexicon. Proc. of
the 7th Slovene Electrotechnical Conference ERK .
1998.

[11] Y. Even-Zohar, D. Roth. A Sequential Model for Multi-
class Classification. Proceedings of Conference on
Empirical Methods in Natural Language Processing
(EMNLP). 2001.

