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ABSTRACT 
 

Lemmatization is the process of finding the normalized form 
of a word. It is the same as looking for a transformation to 
apply on a word to get its normalized form. The approach 
presented in this paper focuses on word endings: what word 
suffix should be removed and/or added to get the normalized 
form. This paper compares the results of two word 
lemmatization algorithms, one based on if-then rules and the 
other based on ripple down rules induction algorithms. It 
presents the problem of lemmatization of words from 
Slovene free text and explains why the Ripple Down Rules 
(RDR) approach is very well suited for the task. When 
learning from a corpus of lemmatized Slovene words the 
RDR approach results in easy to understand rules of 
improved classification accuracy compared to the results of 
rule learning achieved in previous work. 

 
1  INTRODUCTION 
 

Lemmatization is an important preprocessing step for many 
applications of text mining. It is also used in natural 
language processing and many other fields that deal with 
linguistics in general. It also provides a productive way to 
generate generic keywords for search engines or labels for 
concept maps. 

 
Lemmatization is similar to word stemming but it does not 
require to produce a stem of the word but to replace the 
suffix of a word, appearing in fre e text, with a (typically) 
different word suffix to get the normalized word form. For 
instance, the suffixes of words working, works, worked  
would change to get the normalized form work  standing for 
the infinitive: work; in this case, both the normalized word 
form and the word stem are equal. Sometimes the normalized 
form may be different than the stem of the word. For 
example, the words computes , computing , computed would 
be stemmed to comput, but their normalized form is the 
infinitive of the verb: compute. 
 
A lot of work has been carried out in word lemmatization and 
stemming, particularly for English, e.g., the well-known 
Porter stemmer [1]. But except for few research prototypes 

[2, 3] no algorithm is readily available for lemmatization of 
Slovene words. The main difficulty of word lemmatization of 
Slovene is that Slovene is a highly inflected natural 
language, having up to 30 different word forms for the same 
normalized word. 
 
The paper proposes a novel word lemmatization algorithm, 
inspired by well known Ripple Down Rule (RDR) induction 
algorithms [4, 5]. By focusing on word endings the induced 
rules determine which word suffix should be removed 
and/or added to get the normalized form of a word. 
 
The RDR learning algorithm can be applied to a lexicon of 
words in which normalized forms have been defined. The 
algorithm is not biased to Slovene; it could be applied to 
lexicons of English words or words in other languages 
without modifications. Once the lemmatization rules have 
been learned, the rules can be used as a classifier for 
unseen words for which a normalized form needs to be 
generated. Moreover, the rules can be applied to 
lemmatizing words in a free text, after having transformed 
the text into a list of words. 

 
The paper presents the problem of lemmatization of words 
from Slovene free text and explains why the Ripple Down 
Rules (RDR) approach is very well suited for the task, 
showing that on the task of learning from a corpus of 
lemmatized Slovene words the RDR based approach results 
in easy to understand rules of improved classification 
accuracy compared to the results of rule learning achieved 
in previous work. Section 2 defines the problem of 
lemmatization of words from Slovene free text. Section 3 
explains why Ripple Down Rules are appropriate for solving 
this problem. The data and the experimental setting are 
presented in Section 4 and the results of experiments in 
Section 4.3. The paper concludes with a discussion and 
plans for further work. 
 
2  DESCRIPTION OF THE PROBLEM 
 

To understand how lemmatization works, one should know 
how different forms of a word are created.  Most of the 
words change when they are used in different grammatical 



 

forms. The ending of the word is replaced by a grammatical 
ending and this leads to a new form of the initial word.  

 
When we refer to a verb in general, we usually use its 
normalized form as in the verb walk . We then add 
inflections to the normalized form as required. These 
inflections indicate the tense. The “s” inflection indicates 
the present tense, and the “ed” inflection indicates the past 
tense. Thus there would be one rule for each tense covering 
most of the cases and then one could add exceptions as it is 
usually done in the grammar of all natural languages.  

 
Lemmatization will be the inverse transformation: 
replacement of the grammatical ending by the initial suffix. 
Consequently, we define lemmatization in the same way as 
defined in [2], as a replacement of a suffix (the grammatical 
ending) by another suffix (the ending of the normalized 
word).   
 
2.1 Lemmatization as substitution of suffixes 
 

The grammatical ending usually depends on the word 
ending. It means that two words with different endings will 
not have the same grammatical ending, even if they are used 
in the same grammatical form.  

 
For example, the words property and train will not receive 
the same grammatical ending even if they are both used in 
their plural form. Property will lose its “y” and receive a 
suffix “ies” to become properties while train  will receive the 
suffix “s” and change to trains. And this is also true when 
we try to recover the normalized form. The grammatical 
ending will inform us about the ending of the normalized 
form. The suffix “ies” of the word properties indicates that 
the normalized form ends with a “y”. In the proposed 
approach to word lemmatization, the idea is to create rules to 
recover the initial suffix from the grammatical ending. 

 
2.2 Lemmatization as a machine learning problem 
 

As proposed in [2], each word is labeled by a class label, 
that represents the transformation that should be applied to 
get the normalized form of the word. To determine this class, 
a stem should be found first. It is the part the two words (the 
word and its normalized form) have in common. The words 
property  and properties have both the stem “propert” in 
common. Or in Slovene, the words “BRESKEV” and 
“BRESKVAH” have “BRESK” in common. Then we can see 
that we should remove the suffix “VAH” from 
“BRESKVAH” and add the suffix “EV” to get the normalized 
form “BRESKEV”. Thus we assign the class label 
“VAHtoEV” to the word “BRESKVAH”. Our training set is 
made of words with their suffixes and class labels. 

 
Let us now explain the selected class label form. The class 
label assigned to a word is defined by giving the 
transformation to be applied on the word  in order to get the 

normalized form. The transformation is given in the form of 
map S1 to S2 (S1toS2), where S1 is a suffix of the word and 
S2 is a suffix of the normalized word. The class label “_to_” 
means that the word does not change. 

 
As the grammatical endings for words may have different 
lengths, in our approach words are divided into suffixes of 
up to n letters, where n is the size of the word. For instance, 
the word “BRESKEV” is represented by the following 
sample: “V” “EV” “KEV” “SKEV” “ESKEV” “RESKEV” with 
the class value: “_to_”. 

 
3  RIPPLE DOWN RULE APPROACH 
 

Initially, Ripple Down Rules (RDRs, [4, 5]) have been 
developed for knowledge acquisition and maintenance of 
rule-based systems. In knowledge acquisition and 
incremental rule learning, it is often hard to add new rules 
and certify that the adding of a rule will not cause the 
inconsistency of the rule base, causing the existing rules to 
perform badly in new classification tasks.   
 
As opposed to standard classification rules, induced by 
usin g a covering algorithm for ruleset construction (such as 
AQ [6], CN2 [7] and ATRIS [8]), Ripple Down Rules create 
exceptions to existing rules, so that the changes are 
confined to the context of the rule and will not affect other 
rules.  Ripple Down Rules resemble decision lists [9]  which 
induce rules of the form “if-then-else”, as new RDR rules 
are added by creating except or else branches to the 
existing rules. If a rule fires but produces an incorrect 
conclusion then an except  branch is created for the new 
rule. If no rule fires then an else branch is created for the 
new rule. Take a simple Ripple Down Rule: 
 

if a ^ b then c 
except if d then e 

else if f ^ g then h 
 

The rule is interpreted as “if a and b are true then we 
conclude c unless d is true. In that case we conclude e. If a 
and b are not true then we continue with the other rule and 
conclude h, if f and g are true.” This rule form fits very well 
the problem of lemmatization. 
 
To create an exception to a rule, the algorithm should first 
recover the word that induced the rule that fired.  Then the 
differences between the two words are calculated. The 
conditions of the exception rule will correspond to these 
differences.  Suppose that the current rules that the 
algorithm has constructed are the following: 
 

if A then _to_ because of MINA 
else if H then VAHtoEV because of BRESKVAH 
endif 

 



 

and that the new word “BRESKVAMA” is presented to the 
algorithm, then a new rule will be added as follows:  

 
if A then _to_ because of MINA 

except if VAMA then VAMAtoEV because of 
BRESKVAMA 

end except 
else if VAH then VAHtoEV because of BRESKVAH 
endif 

 
The grammar of a language is made of rules that cover 
almost all examples and some exceptions to these rules. For 
example, in English, there would be a rule that says: the 
suffix “ed” is added to every verb when used in the past 
tense and some exception rules would be: unless the verb 
ends with a “y”, the suffix “ied” is added. All the auxiliary 
verbs are exceptions to the rule of the “ed” suffix as well. 
Therefore we need a system that first creates the most 
general possible rules and then adds exceptions for more 
specific cases. 
 
4  EXPERIMENTS 
 

4.1  The data 
 

Five datasets taken from [2], were obtained as random 
samples of different size taken from a large hand-
constructed lexicon MULText -EAST [10]. The whole lexicon 
contains about 20 000 different normalized words with listed 
different forms for each of them resulting in about 500 000 
different entries (potential learning examples). For each word 
its normalized form is provided and additionally, the word is 
annotated by some information about the word form such as 
singular/plural, noun/verb/adjective, etc. Since our 
motivation is to develop an approach that can be used on 
any text in the selected natural language and this additional 
information is not readily available in the usual texts, we are 
not using it here. However, one can argue that if a language 
tagger is available and the text is in the appropriate form to 
apply it, this additional information could be very valuable. 

 
4.2  The experimental setting  
 

We have done different experiments to expose the ability of 
Ripple Down Rules to perform lemmatization. We used the 
datasets presented before to provide a comparison with 
classification rules induced by the ATRIS rule induction 
algorithm [8, 2]. The five original datasets, used in [2], 
contain 160, 920, 1890, 3820, 5720 samples randomly taken 
from the lexicon, respectively.  

 
For each of the five datasets, we report results of 
classification accuracy achieved in 5-fold cross-validation, 
where we used exactly the same examples. We used subsets 
of the whole labeled data set split randomly into 5 folds. The 
whole training-testing loop was thus repeated five times, 
with each of the five subsets being excluded from training 
and used as testing exactly once (cross-validation). 

 
4.3  Results of experiments 
 

The results of all experiments reported in this section are 
shown in Figure 1 and Table1. 
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Figure 1: Results of 5-fold cross-valdation for each of the 
five datasets having different number of samples.  
 
 

 Original 
approach 

Sequential 
modeling 

ATRIS 62.6 ± 0.07 72.8 ± 0.7 
RDR 77.0 ± 0.6 77.0 ± 0.6 

 
Table 1: Classification accuracy with 5-fold cross-
validation on dataset with 5720 samples. 
 
The samples were presented to the algorithm in a random 
order. As in previous work using ATRIS, we can see 
(Figure 1) that the variation in the performance on different 
sample sizes was small, after having included at least 2000 
examples. For the same maximal number of samples 
presented, RDR achieved 77.0% accuracy. We can attribute 
this improvement to the construction of the general rules 
first and then of more specific rules. It seems that we can 
cover more examples with less training. That is why we get 
better accuracy even with fewer examples presented. The 
improvement may be also attributed to the construction of 
RDR where we keep all the cases covered by the rules in 
order to build reliable exceptions. 
 
When looking at the results of previous work [2], we see 
that the best accuracy is obtained when using Sequential 



 

modeling  [11]. Sequential modeling is used to preformat the 
training data in order to get words grouped according to 
their last letter. Then rules are generated for each group of 
words with the same ending. Namely, instead of taking all 
the training examples with 486 different class values, a one 
level decision tree (decision stump) is generated that divides 
the examples into subsets depending on the last letter in the 
word. In this way the problem is decomposed into 20 
independent subproblems, each having between 1 and 40 
class values (most of the subproblems have less than 10 
class values) instead of 486 class values. 

 
We should note that the architecture of the rules induced by 
our algorithm already handles sequential modeling because 
rules are based on suffixes with increasing lengths, which 
means that the first rules are always based on the last letter 
only. Thus we get exactly the same results for the two 
experiments. 
 
5  DISCUSSION 
 

The experiments have confirmed that the architecture of 
Ripple Down Rules is appropriate for the problem of 
lemmatization. We believe that these results may be 
improved by using grammatical information about the words 
as is done in [3] whose results are better (92%) but they are 
using much more (grammatical) information and they are 
learning separate rules for verbs, nouns, adjectives, ... As 
the training and testing conditions are not the same, the 
results are not comparable and our goal was to improve the 
accuracy on free text without any grammatical information. 
Hence, we  are only able to compare the results of RDR with 
the results previously achieved by the ATRIS rule learner, 
using the same experimental setting. But as we expect the 
creation or improvement of taggers for Slovene, grammatical 
information will become more and more available and 
valuable. Then the creation of a new system capable of 
creating more precise rules for Slovene will be possible. We 
also expect to obtain rules with a strong linguistic meaning, 
where the grammar will be presented clearly, just as the 
grammatical rules of a language usually are. The goal is to 
create a system for both lemmatization performance and 
linguistic knowledge extraction. 
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