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ABSTRACT 
This paper presents a short overview of methods for fuzzy 
clustering and states desired properties for an optimal fuzzy 
document clustering algorithm. Based on these criteria we 
chose one of the fuzzy clustering most prominent methods – 
the c-means, more precisely probabilistic c-means. This 
algorithm is presented in more detail along with some 
empirical results of the clustering of 2-dimensional points 
and documents. For the needs of documents clustering we 
implemented fuzzy c-means in the TextGarden environment. 
We show few difficulties with the implementation and their 
possible solutions. As a conclusion we also propose further 
work that would be needed in order to fully exploit the 
power of fuzzy document clustering in TextGarden. 

1 INTRODUCTION 
Clustering is an unsupervised classification of objects (data 
instances) into different groups. In particular we are talking 
about the partitioning of a dataset into subsets (clusters), so 
that the data in each subset (ideally) share some common 
property. This property is usually defined as proximity 
according to some predefined distance measure. The goal is 
to divide the dataset in such a way that objects belonging to 
the same cluster are as similar as possible, whereas objects 
belonging to different clusters are as dissimilar as possible. 
The computational task of classifying the data set into k 
clusters is often referred to as k-clustering. Although 
estimating the actual number of clusters (k) is an important 
issue we leave it untouched in this work. 
Fuzzy clustering [1, 2] in contrast to the usual (crisp) 
methods does not provide hard clusters, but returns a degree 
of membership of each object to all the clusters. The 
interpretation of these degrees is then left to the user that can 
apply some kind of a thresholding to generate hard clusters 
or use these soft degrees directly.    
All the algorithms that we consider here are partitional, 
deterministic and non-incremental (based on the taxonomy 
defined in [4]). The property that we want to change using 
fuzzy methods instead of crisp clustering is exclusiveness, as 
there are cases in which algorithms constructing overlapping 
partitions of set of documents perform better than the 
exclusive algorithms. 

Text-Garden [3] is a software library and collection of 
software tools for solving large scale tasks dealing with 
structured, semi-structured and unstructured data – the 
emphasis of its functionality is on dealing with text. It can be 
used in various ways covering research and applicative 
scenarios. Our special interest in TextGarden is the OntoGen 
tool [7]. Ontogen is a semi-automated, data-driven ontology 
construction tool, focused on the construction and editing of 
topic ontologies based on document clustering. Actually we 
want to upgrade OntoGen with fuzzy clustering properties; 
however, since it is based on TextGarden we must provide 
the implementation of the fuzzy clustering algorithm in its 
library. 

2 FUZZY CLUSTERING ALGORITHMS 
In this section, we present some of the fuzzy clustering 
algorithms mainly based on the descriptions in [5]. We 
devote the majority of space to the hard c-means, fuzzy c-
means and possibilistic c-means. For the other methods we 
provide just a short description, as we did not find them 
appropriate for our needs. 
All algorithms described here are based on objective 
functions, which are mathematical criteria that quantify the 
quality of cluster models. The goal of each clustering 
algorithm is the minimization of its objective function. The 
ollowing syntax will be used in the equations, algorithms 
nd their explanations: 

f
a

nction ܬ ... objective fu
 ... dataset of all objects (data instances)  X ൌ ሼܠ , … , ܠ ሽ

 set of cluster prototypes (c troid vecto ) 
ଵ ୬

C ൌ ሼ܋ଵ, … , ... ୡሽ܋ en rs
ൌ  ԡܠଵ െ ୧ ݀௜௝܋ ୨ and centreܠ ଵԡ... distance between object܋

s nment of object ܠ୨ to cluster ݅ ݑ௜௝... weight of a sig

berships vector of objectܝ௝ ൌ ൫ݑଵ௝, … , ௖௝൯்ݑ
... mem   ୨ܠ 

U ൌ ൫ݑ௜௝൯ ൌ  ሺܝଵ, … , ܿ ௡ሻ ... partition matrix of sizeܝ ൈ ݊ 

2.1 Hard c-means (HCM) 
Hard c-means is better known as k-means and in general this 
is not a fuzzy algorithm. However, its overall structure is the 
basis for all the others methods. Therefore we call it hard c-



means in order to emphasize that it serves as a starting point 
for the fuzzy extensions. 
The objective function   written as follows: of HCM can be

௛ܬ  ൌ ෍ ෍ ௜௝݀௜௝ݑ
ଶ

୬

j=1

ୡ

i=1

. (2.1) 

As mentioned HCM is a crisp algorithm, therefore: 
௜௝ݑ א ሼ0, 1ሽ. It is also required that each object belongs to 
exactly one cluster: ∑ ௜௝ݑ

௖
௜ୀଵ ൌ 1, ݆׊ א ሼ1, … , ݊ሽ. 

Before outlining the alg u  know how to 
calculate new mem

orithm, we m st
bership weights: 
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௡
௝ୀଵ
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௝ୀଵ

(2.2) 

and based on the weights e new cluster centres: 

  (2.3) 

The algorithm can now be stated very simply as shown in 
Table 2.1. 
INPUT: A set of learning objects to be clustered 
and the number of desired clusters c 

OUTPUT: Partition of learning examples into c 
clusters and membership values ݑ௜௝ for each example 
 .݅ ୨ and clusterܠ
ALGORITHM (2.1) The hard c-means algorithm: 

(randomly) generate clusters centres 

repeat  

for each object recalculate membership weights 
using equation (2.2) 

recompute the new centres using equation (2.3)

until no change in C can be observed 

Table 2.1: Pseudocode of the HCM clustering algorithm. 

The HCM algorithm has a tendency to get stuck in a local 
minimum, which makes it necessary to conduct several runs 
of the algorithm with different initializations. Then the best 
result out of many clusterings can be chosen based on the 
objective function value. 

2.2 Fuzzy c e F M) -m ans ( C
Probabilistic fuzzy cluster analysis [1, 2] relaxes the 
requirement: ݑ௜௝ א ሼ0, 1ሽ, which now becomes: ݑ௜௝ א ሾ0, 1ሿ. 
However ∑ ௜௝ݑ

௖
௜ୀଵ ൌ 1, ݆׊ א ሼ1, … , ݊ሽ still holds. FCM 

optimizes the follow g n tion: in  objective fu c

௙ܬ  ൌ ෍ ෍ ௜௝ݑ
௠݀௜௝

ଶ
୬

j=1

ୡ

i=1

. (2.4) 

Parameter m, m>1, is called the fuzzyfier or the weighting 
exponent. The actual value of m determines the ‘fuzziness’ 
of the classification. It has been shown [5] that for the case 
m=1, ܬ௙ becomes identical to ܬ௛ and thus FCM becomes 
identical to hard c-means. 
The transformation from the hard c-means to the FCM is 
very straightforward; we must just change the equation for 
calculating memberships (2.2) with: 
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1
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݀௜௝

ଶ

݀௟௝
ଶ ቇ

ଵ
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, (2.5) 

and function for recom n entres puti g clusters c

௜܋ ൌ
∑ ௜௝ݑ

௠ܠ௝
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(2.3) with: 

 . (2.6) 

Equation (2.5) clearly shows the relative character of the 
probabilistic membership degree. It depends not only on the 
distance of the object ܠ୨ to the cluster ܋௜, but also on the 
distances between this object and other clusters. 
Although the algorithm stays the same as in HCM (Table 
2.1), we get probabilistic outputs if we apply above changes. 
The (probabilistic) fuzzy c-means algorithm is known as a 
stable and robust classification method. Compared with the 
hard c-means it is quite insensitive to its initialization and it 
is not likely to get stuck in an undesired local minimum of 
its objective function in practice. Due to its simplicity and 
low computational demands, the probabilistic FCM is a 
widely used initializer for other more sophisticated 
clustering methods. 

2.3 Possibilistic c-means (PCM) 
Although often desirable, the relative property of the 
probabilistic membership degrees can be misleading. High 
values for the membership of object in more than one cluster 
can lead to the impression that the object is typical for the 
clusters, but this is not always the case. Consider, for 
example, the simple case of two clusters shown in Figure 
2.1. Object ܠଵ has the same distance to both clusters and 
thus it is assigned a membership degree of about 0.5. This is 
plausible. However, the same degrees of membership are 
assigned to object ܠଶ even though this object is further away 
from both clusters and should be considered less typical. 
Because of the normalization the sum of the memberships 
has to be 1. Consequently ܠଶ receives fairly high 
membership degrees to both clusters. For a correct 
interpretation of these memberships one has to keep in mind 
that they are rather degrees of sharing than of typicality, 
since the constant weight of 1, given to an object, must be 
distributed over the clusters. 

 
Figure 2.1: Example of misleading interpretation of the 

FCM membership degree. 

ଶܠ ଵܠ

Γଵ 

Γଶ 



Therefore PCM, besides relaxing the condition for ݑ௜௝ to 
௜௝ݑ א ሾ0, 1ሿ as in case of FCM, also drops the normalization 
requirement: ∑ ௜௝ݑ

௖
௜ୀଵ ൌ 1, ݆׊ א ሼ1, … , ݊ሽ. The probabilistic 

objective function ܬ௙ that just minimizes squared distances 
would be inappropriate because with dropping of the 
normalization constraint a trivial solution exists for ݑ௜௝ ൌ 0 
for all ݅ א ሼ1, … , ܿሽ and ݆ א ሼ1, … , ݊ሽ, i.e., all clusters are 
empty. In order to avoid this solution, penalty a term is 
introduced that forces the memberships away from zero. 
Objectiv  f od  e unction ܬ௙ is m ified to:

௣ܬ  ൌ ෍ ௜௝ݑ ݀௜௝෍ ௠ ଶ
୬

j=1

ୡ

i=1

௜ߟ ෍൫1 െ ௜௝൯௠ݑ
୬

൅ ෍
j=1

ୡ

, 
i=1

where ߟ௜ ൐ 0 for all ݅ א ሼ1, … , ܿሽ. 

(2.7) 

In the PCM algorithm, the equation for calculating cluster 
centres stays the same as in FCM 

s n

௜௝ݑ ൌ
1

ቆ
݀௜௝

ଶ

௜ߟ

(2.6). But the equation for 
recalculating membership degree  cha ges from (2.5) to: 
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This also slightly changes the original procedure (Table 2.1) 
since we must recompute ߟ ng the equation ௜ usi

t ݑ . 

௜ߟ ൌ
∑ ௜௝ݑ

௠݀௜௝
ଶ௡

௝ୀଵ

∑ ௜௝ݑ
௠௡

௝ୀଵ

(2.9) before 
calculating the weigh ௜௝

 . (2.9) 

Properties of PCM [5] are the following: 
• Cluster Coincidence: since PCM is not forced to partition 

data exhaustively it can lead to solutions where two or 
more clusters occupy the same space (same objects with 
the same membership weighting). 

• Cluster Repulsion: objective function ܬ௣ is, in general, 
fully optimized only if all clustered centres are identical. 
Because of that, other, not optimal solutions are found 
just as a side effect of ܬ௣ getting stuck in a local 
optimum.  

Because of these unwanted properties we did not choose 
PCM to be our choice for the implementation. However we 
also did not decide that this method is totally inappropriate 
for us. Thus we leave this matter open as the future 
possibility of implementing PCM in TextGarden library. 

2.4 Other reviewed algorithm 
During the review of fuzzy clustering algorithms we 
considered also the following algorithms. We will not 
precisely describe them in this paper, since we decided that 
they are not the best choice for our implementation. An 
interesting reader can find their descriptions in [6] or [5]. 
• Gustafson-Kessel Algorithm: while FCM and PCM can 

only detect spherical clusters GKA can identify also 
clusters of different forms and sizes. It is more sensitive 
to initialization and has higher computational costs. 

• Fuzzy Shell Clustering: can, in contrast to all the 
algorithms above, identify also non-convex shaped 
clusters. They are especially useful in the area of image 
recognition. We think that this property in not needed in 
text clustering. 

• Kernel-based Fuzzy Clustering: are variants of fuzzy 
clustering algorithms that modify the distance function to 
handle non-vectorial data, such as sequences, trees or 
graphs, without the requirement to completely modify 
the algorithm itself. In text clustering we are dealing with 
vectors so there is no need for such an advanced method. 

3 IMPLEMENTATION 

3.1 Evaluation on 2-dimensional points 
Before having implemented FCM in the TextGarden 
environment we tested the algorithm on 2-dimensional 
points. Data was generated artificially using normally 
distributed clusters of random size, position and standard 
deviation. Empirical evaluations showed us some of the 
advantages of FCM compared to hard c-means:  
• Lower probability of getting caught in the local 

optimum. We found few test scenarios where HCM gets 
stuck in local optima in approximately 50% of all runs 
but FCM never, using the same initial distributions. We 
could not find example where FCM would provide a 
non-optimal solution, but it should be noted that we 
knew and used the correct number of clusters ܿ for both 
algorithms. 

• Better correct centre (centroid vector) localization (at 
least on the normally distributed artificial data). 

The main reason against using FCM is its higher 
computational complexity. 

3.2 Definition of a distance measure 
One of the problems that we encountered during the 
implementation was how to define a measure of distance 
between objects (or between an object and a centre of 
clusters). TextGarden library uses mainly a measure of 
similarity based on the cosine similarity. This proximity 
measure ranges from 0 to 1 where  m ns no similarity and 
1 means c

 0 ea
total equality of ve tors: 

,ଵܠሺ݉݅ݏ ଶሻܠ ൌ cos ߠ ൌ
ଵܠ · ଶܠ 

ԡܠଵԡԡܠଶԡ  א ሾ0,1ሿ, (3.1) 

where ܠ୧ is an object or more specifically in our case a bag-
of-word vector representation of a document and 
,ଵܠሺע is ߠ  ଶሻ. Our problem was that we actually needed theܠ
opposite of the similarity – a distance for the FCM 
algorithm tw  derive a 
distance a

. The o most obvious ways how to
re: 
݀ െ ܠሺ݉݅ݏ , ܠ א  ሿ,  ݅ݐݏሺܠଵ, ଶሻܠ ൌ 1 ଵ ଶሻ ሾ1,0

,ଵܠሺݐݏ݅݀ ଶሻܠ ൌ
1

ܠሺ݉݅ݏ , ଶሻܠ

(3.2) 

 
ଵ

א  ሾן ,1ሿ, (3.3) 

The difficulty of (3.2) is that it’s not preserving relations i.e. 
if ܠଵis two times more similar to ܋ than ܠଶ it is not necessary 



that ܠଵ will be also two times closer to ܋ than ܠଶ. On the 
other hand (3.3) has another unwanted property. Its image 
interval starts from 1 and not from 0 as we would like to 
have if vectors are equal. 
We tried both distances and evaluated them also 
experimentally. We have not discovered any significant 
change in FCM behaviour regardless of the selected 
distance. Thus we decided for (3.2) because it is simpler for 
calculation and we do not need to check for infinite numbers 
which results in faster execution. 

3.3 Time complexity 
Time complexiti pectively: es of HCM and FCM are res

 ܱு஼ெ ൌ ܱሺ݅ு஼ெ · ݊ · ܿ ·  ,ሻݒ
ܱி஼ெ ൌ ܱ൫݅ி஼ெ · ݊ · ܿ · ሺݒ ൅ ܿሻ൯, 

(3.4) 
 (3.5) 

where i is the number of required iterations and v is the 
length of an example vector. According to our experimental 
results ݅ி஼ெ is slightly higher than ݅ு஼ெ. Consequently we 
assume that they share the same order of magnitude and are 
therefore equal as this analysis is concerned. 
We can declare that the statement: 

ܱሺ݅ · ݊ · ܿ · ሻݒ  ܱ൫݅ · ݊ · ܿ ሺݒ ൅ ܿሻ൯  ~ ·
holds if dimensionality of the vector ݒ is much higher than 
the number of clusters ܿ. This is also the case for text 
clustering in TextGarden, so we can confirm that the time 
complexity of fuzzy c-means is similar to the one of hard c-
means. Certainly we must admit that there is probably some 
constant factor linking the actual speeds because of the 
higher complexity of the inner most loops (calculation of 
distances and weights) of FCM compared to HCM. We 
estimate this factor to be in the range from 1 to 3.  

(3.6) 

3.4 An experiment on the documents data 
Table 3.1 shows the results of documents clustering for both 
algorithms (FCM and HCM). As a set of documents we used 
1000 random texts from the Yahoo Finance dataset of the 
companies’ descriptions. We partitioned the set into 5 
clusters using the same initial distributions and the same 
shared parameters. For each cluster we provide the mean 
inner similarity value, the number of documents and the 
three most characteristic keywords. The clusters are aligned 
therefore the results can be directly compared. It is evident 
that both algorithms found similar clusters. The average 
mean similarity is lower for c-means which might be the 
result of better centre localization of c-means. 
 
Documents: 1000 (FCM) 
Mean Similarity: 0.182 

Documents: 1000 (HCM) 
Mean Similarity: 0.177 

Mean Sim.0.443, 92 Docs. 
'BANKING':0.854 
'LOANS':0.254 
'DEPOSITS':0.113 

Mean Sim.0.369, 124 Docs.
'BANKING':0.770 
'INSURANCE':0.404 
'LOANS':0.166 

Mean Sim.0.137, 269 Docs. 
'GAS':0.247 
'EXPLORATION':0.240 
'PROPERTY':0.180 

Mean Sim.0.145, 218 Docs.
'GAS':0.263 
'POWER':0.244 
'EXPLORATION':0.199 

Mean Sim.0.180, 180 Docs. 
'DRUGS':0.386 
'PHARMACEUTICALS':0.260 
'DISEASES':0.229 

Mean Sim.0.181, 170 Docs.
'DRUGS':0.386 
'PHARMACEUTICALS':0.263 
'CHEMICALS':0.245 

Mean Sim.0.244, 107 Docs. 
'INSURANCE':0.623 
'INVESTMENTS':0.261 
'INSURANCE_COMPANY':0.173 

Mean Sim.0.155, 187 Docs.
'PROPERTY':0.303 
'INVESTMENTS':0.271 
'SECURITIES':0.191 

Mean Sim.0.129, 352 Docs. 
'WIRELESS':0.202 
'SOLUTIONS':0.181 
'SOFTWARE':0.175 

Mean Sim.0.134, 301 Docs.
'SOLUTIONS':0.203 
'STORES':0.191 
'SOFTWARE':0.181 

Table 3.1: Comparison of HCM and FCM algorithms on the 
Yahoo Finance dataset 

4 CONCLUSIONS 
This paper presents an overview of fuzzy clustering 
algorithms that could be potentially suitable for document 
clustering, a new fuzzy c-means clustering algorithm 
implemented in the TextGarden environment, and an 
empirical comparison of hard c-means and fuzzy c-means as 
an application on documents and 2D points. 
Further work will consider: connecting fuzzy c-means with 
Ontogen and designing and implementing some adaptive 
threshold approach for converting fuzzy cluster to its crisp 
equivalent. This should be done in such a way that one 
document could be assigned to none, one or more clusters 
according to its membership degrees and similarities to the 
clusters. Furthermore we will perform statistical evaluation 
of hard c-means and fuzzy c-means in terms of document 
classification using other quality measures (besides average 
similarity) for generated clusters. 
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