
FUZZY CLUSTERING OF DOCUMENTS

Matjaž Juršič, Nada Lavrač
Department of Knowledge Discovery

Jozef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia

Tel: +386 1 4773125
E-mail: matjaz.jursic@ijs.si

ABSTRACT
This paper presents a short overview of methods for fuzzy
clustering and states desired properties for an optimal fuzzy
document clustering algorithm. Based on these criteria we
chose one of the fuzzy clustering most prominent methods –
the c-means, more precisely probabilistic c-means. This
algorithm is presented in more detail along with some
empirical results of the clustering of 2-dimensional points
and documents. For the needs of documents clustering we
implemented fuzzy c-means in the TextGarden environment.
We show few difficulties with the implementation and their
possible solutions. As a conclusion we also propose further
work that would be needed in order to fully exploit the
power of fuzzy document clustering in TextGarden.

1 INTRODUCTION
Clustering is an unsupervised classification of objects (data
instances) into different groups. In particular we are talking
about the partitioning of a dataset into subsets (clusters), so
that the data in each subset (ideally) share some common
property. This property is usually defined as proximity
according to some predefined distance measure. The goal is
to divide the dataset in such a way that objects belonging to
the same cluster are as similar as possible, whereas objects
belonging to different clusters are as dissimilar as possible.
The computational task of classifying the data set into k
clusters is often referred to as k-clustering. Although
estimating the actual number of clusters (k) is an important
issue we leave it untouched in this work.
Fuzzy clustering [1, 2] in contrast to the usual (crisp)
methods does not provide hard clusters, but returns a degree
of membership of each object to all the clusters. The
interpretation of these degrees is then left to the user that can
apply some kind of a thresholding to generate hard clusters
or use these soft degrees directly.
All the algorithms that we consider here are partitional,
deterministic and non-incremental (based on the taxonomy
defined in [4]). The property that we want to change using
fuzzy methods instead of crisp clustering is exclusiveness, as
there are cases in which algorithms constructing overlapping
partitions of set of documents perform better than the
exclusive algorithms.

Text-Garden [3] is a software library and collection of
software tools for solving large scale tasks dealing with
structured, semi-structured and unstructured data – the
emphasis of its functionality is on dealing with text. It can be
used in various ways covering research and applicative
scenarios. Our special interest in TextGarden is the OntoGen
tool [7]. Ontogen is a semi-automated, data-driven ontology
construction tool, focused on the construction and editing of
topic ontologies based on document clustering. Actually we
want to upgrade OntoGen with fuzzy clustering properties;
however, since it is based on TextGarden we must provide
the implementation of the fuzzy clustering algorithm in its
library.

2 FUZZY CLUSTERING ALGORITHMS
In this section, we present some of the fuzzy clustering
algorithms mainly based on the descriptions in [5]. We
devote the majority of space to the hard c-means, fuzzy c-
means and possibilistic c-means. For the other methods we
provide just a short description, as we did not find them
appropriate for our needs.
All algorithms described here are based on objective
functions, which are mathematical criteria that quantify the
quality of cluster models. The goal of each clustering
algorithm is the minimization of its objective function. The
ollowing syntax will be used in the equations, algorithms
nd their explanations:

f
a

nction ܬ ... objective fu
 ... dataset of all objects (data instances) X ൌ ሼܠ , … , ܠ ሽ

 set of cluster prototypes (c troid vecto)
ଵ ୬

C ൌ ሼ܋ଵ, … , ... ୡሽ܋ en rs
ൌ ԡܠଵ െ ୧ ݀܋ ୨ and centreܠ ଵԡ... distance between object܋

s nment of object ܠ୨ to cluster ݅ ݑ... weight of a sig

berships vector of objectܝ ൌ ൫ݑଵ, … , ൯்ݑ
... mem ୨ܠ

U ൌ ൫ݑ൯ ൌ ሺܝଵ, … , ܿ ሻ ... partition matrix of sizeܝ ൈ ݊

2.1 Hard c-means (HCM)
Hard c-means is better known as k-means and in general this
is not a fuzzy algorithm. However, its overall structure is the
basis for all the others methods. Therefore we call it hard c-

means in order to emphasize that it serves as a starting point
for the fuzzy extensions.
The objective function written as follows: of HCM can be

ܬ ൌ ݀ݑ
ଶ

୬

j=1

ୡ

i=1

. (2.1)

As mentioned HCM is a crisp algorithm, therefore:
ݑ א ሼ0, 1ሽ. It is also required that each object belongs to
exactly one cluster: ∑ ݑ

ୀଵ ൌ 1, ݆ א ሼ1, … , ݊ሽ.

Before outlining the alg u know how to
calculate new mem

orithm, we m st
bership weights:

ݑ ൌ ൜1, i f ݅ ൌ argminୀଵ
 ݀

0, ot erw e
,

h is
, how to deriv

܋ ൌ
∑ ܠݑ

ୀଵ

∑ ݑ

ୀଵ

(2.2)

and based on the weights e new cluster centres:

 (2.3)

The algorithm can now be stated very simply as shown in
Table 2.1.
INPUT: A set of learning objects to be clustered
and the number of desired clusters c

OUTPUT: Partition of learning examples into c
clusters and membership values ݑ for each example
 .݅ ୨ and clusterܠ
ALGORITHM (2.1) The hard c-means algorithm:

(randomly) generate clusters centres

repeat

for each object recalculate membership weights
using equation (2.2)

recompute the new centres using equation (2.3)

until no change in C can be observed

Table 2.1: Pseudocode of the HCM clustering algorithm.

The HCM algorithm has a tendency to get stuck in a local
minimum, which makes it necessary to conduct several runs
of the algorithm with different initializations. Then the best
result out of many clusterings can be chosen based on the
objective function value.

2.2 Fuzzy c e F M) -m ans (C
Probabilistic fuzzy cluster analysis [1, 2] relaxes the
requirement: ݑ א ሼ0, 1ሽ, which now becomes: ݑ א ሾ0, 1ሿ.
However ∑ ݑ

ୀଵ ൌ 1, ݆ א ሼ1, … , ݊ሽ still holds. FCM

optimizes the follow g n tion: in objective fu c

ܬ ൌ ݑ
݀

ଶ
୬

j=1

ୡ

i=1

. (2.4)

Parameter m, m>1, is called the fuzzyfier or the weighting
exponent. The actual value of m determines the ‘fuzziness’
of the classification. It has been shown [5] that for the case
m=1, ܬ becomes identical to ܬ and thus FCM becomes
identical to hard c-means.
The transformation from the hard c-means to the FCM is
very straightforward; we must just change the equation for
calculating memberships (2.2) with:

ݑ ൌ
1

∑ ቆ
݀

ଶ

݀
ଶ ቇ

ଵ
ିଵ

ୀଵ

ൌ
݀

ିଶ
ିଵ

∑ ݀

ିଶ
ିଵ

ୀଵ

, (2.5)

and function for recom n entres puti g clusters c

܋ ൌ
∑ ݑ

ܠ

ୀଵ

∑ ݑ

ୀଵ

(2.3) with:

 . (2.6)

Equation (2.5) clearly shows the relative character of the
probabilistic membership degree. It depends not only on the
distance of the object ܠ୨ to the cluster ܋, but also on the
distances between this object and other clusters.
Although the algorithm stays the same as in HCM (Table
2.1), we get probabilistic outputs if we apply above changes.
The (probabilistic) fuzzy c-means algorithm is known as a
stable and robust classification method. Compared with the
hard c-means it is quite insensitive to its initialization and it
is not likely to get stuck in an undesired local minimum of
its objective function in practice. Due to its simplicity and
low computational demands, the probabilistic FCM is a
widely used initializer for other more sophisticated
clustering methods.

2.3 Possibilistic c-means (PCM)
Although often desirable, the relative property of the
probabilistic membership degrees can be misleading. High
values for the membership of object in more than one cluster
can lead to the impression that the object is typical for the
clusters, but this is not always the case. Consider, for
example, the simple case of two clusters shown in Figure
2.1. Object ܠଵ has the same distance to both clusters and
thus it is assigned a membership degree of about 0.5. This is
plausible. However, the same degrees of membership are
assigned to object ܠଶ even though this object is further away
from both clusters and should be considered less typical.
Because of the normalization the sum of the memberships
has to be 1. Consequently ܠଶ receives fairly high
membership degrees to both clusters. For a correct
interpretation of these memberships one has to keep in mind
that they are rather degrees of sharing than of typicality,
since the constant weight of 1, given to an object, must be
distributed over the clusters.

Figure 2.1: Example of misleading interpretation of the

FCM membership degree.

ଶܠ ଵܠ

Γଵ

Γଶ

Therefore PCM, besides relaxing the condition for ݑ to
ݑ א ሾ0, 1ሿ as in case of FCM, also drops the normalization
requirement: ∑ ݑ

ୀଵ ൌ 1, ݆ א ሼ1, … , ݊ሽ. The probabilistic

objective function ܬ that just minimizes squared distances
would be inappropriate because with dropping of the
normalization constraint a trivial solution exists for ݑ ൌ 0
for all ݅ א ሼ1, … , ܿሽ and ݆ א ሼ1, … , ݊ሽ, i.e., all clusters are
empty. In order to avoid this solution, penalty a term is
introduced that forces the memberships away from zero.
Objectiv f od e unction ܬ is m ified to:

ܬ ൌ ݑ ݀ ଶ
୬

j=1

ୡ

i=1

ߟ ൫1 െ ൯ݑ
୬

j=1

ୡ

,
i=1

where ߟ 0 for all ݅ א ሼ1, … , ܿሽ.

(2.7)

In the PCM algorithm, the equation for calculating cluster
centres stays the same as in FCM

s n

ݑ ൌ
1

ቆ
݀

ଶ

ߟ

(2.6). But the equation for
recalculating membership degree cha ges from (2.5) to:

ቇ

ଵ
ିଵ

.
(2.8)

This also slightly changes the original procedure (Table 2.1)
since we must recompute ߟ ng the equation usi

t ݑ .

ߟ ൌ
∑ ݑ

݀
ଶ

ୀଵ

∑ ݑ

ୀଵ

(2.9) before
calculating the weigh

 . (2.9)

Properties of PCM [5] are the following:
• Cluster Coincidence: since PCM is not forced to partition

data exhaustively it can lead to solutions where two or
more clusters occupy the same space (same objects with
the same membership weighting).

• Cluster Repulsion: objective function ܬ is, in general,
fully optimized only if all clustered centres are identical.
Because of that, other, not optimal solutions are found
just as a side effect of ܬ getting stuck in a local
optimum.

Because of these unwanted properties we did not choose
PCM to be our choice for the implementation. However we
also did not decide that this method is totally inappropriate
for us. Thus we leave this matter open as the future
possibility of implementing PCM in TextGarden library.

2.4 Other reviewed algorithm
During the review of fuzzy clustering algorithms we
considered also the following algorithms. We will not
precisely describe them in this paper, since we decided that
they are not the best choice for our implementation. An
interesting reader can find their descriptions in [6] or [5].
• Gustafson-Kessel Algorithm: while FCM and PCM can

only detect spherical clusters GKA can identify also
clusters of different forms and sizes. It is more sensitive
to initialization and has higher computational costs.

• Fuzzy Shell Clustering: can, in contrast to all the
algorithms above, identify also non-convex shaped
clusters. They are especially useful in the area of image
recognition. We think that this property in not needed in
text clustering.

• Kernel-based Fuzzy Clustering: are variants of fuzzy
clustering algorithms that modify the distance function to
handle non-vectorial data, such as sequences, trees or
graphs, without the requirement to completely modify
the algorithm itself. In text clustering we are dealing with
vectors so there is no need for such an advanced method.

3 IMPLEMENTATION

3.1 Evaluation on 2-dimensional points
Before having implemented FCM in the TextGarden
environment we tested the algorithm on 2-dimensional
points. Data was generated artificially using normally
distributed clusters of random size, position and standard
deviation. Empirical evaluations showed us some of the
advantages of FCM compared to hard c-means:
• Lower probability of getting caught in the local

optimum. We found few test scenarios where HCM gets
stuck in local optima in approximately 50% of all runs
but FCM never, using the same initial distributions. We
could not find example where FCM would provide a
non-optimal solution, but it should be noted that we
knew and used the correct number of clusters ܿ for both
algorithms.

• Better correct centre (centroid vector) localization (at
least on the normally distributed artificial data).

The main reason against using FCM is its higher
computational complexity.

3.2 Definition of a distance measure
One of the problems that we encountered during the
implementation was how to define a measure of distance
between objects (or between an object and a centre of
clusters). TextGarden library uses mainly a measure of
similarity based on the cosine similarity. This proximity
measure ranges from 0 to 1 where m ns no similarity and
1 means c

 0 ea
total equality of ve tors:

,ଵܠሺ݉݅ݏ ଶሻܠ ൌ cos ߠ ൌ
ଵܠ · ଶܠ

ԡܠଵԡԡܠଶԡ א ሾ0,1ሿ, (3.1)

where ܠ୧ is an object or more specifically in our case a bag-
of-word vector representation of a document and
,ଵܠሺע is ߠ ଶሻ. Our problem was that we actually needed theܠ
opposite of the similarity – a distance for the FCM
algorithm tw derive a
distance a

. The o most obvious ways how to
re:
݀ െ ܠሺ݉݅ݏ , ܠ א ሿ, ݅ݐݏሺܠଵ, ଶሻܠ ൌ 1 ଵ ଶሻ ሾ1,0

,ଵܠሺݐݏ݅݀ ଶሻܠ ൌ
1

ܠሺ݉݅ݏ , ଶሻܠ

(3.2)

ଵ

א ሾן ,1ሿ, (3.3)

The difficulty of (3.2) is that it’s not preserving relations i.e.
if ܠଵis two times more similar to ܋ than ܠଶ it is not necessary

that ܠଵ will be also two times closer to ܋ than ܠଶ. On the
other hand (3.3) has another unwanted property. Its image
interval starts from 1 and not from 0 as we would like to
have if vectors are equal.
We tried both distances and evaluated them also
experimentally. We have not discovered any significant
change in FCM behaviour regardless of the selected
distance. Thus we decided for (3.2) because it is simpler for
calculation and we do not need to check for infinite numbers
which results in faster execution.

3.3 Time complexity
Time complexiti pectively: es of HCM and FCM are res

 ܱுெ ൌ ܱሺ݅ுெ · ݊ · ܿ · ,ሻݒ
ܱிெ ൌ ܱ൫݅ிெ · ݊ · ܿ · ሺݒ ܿሻ൯,

(3.4)
 (3.5)

where i is the number of required iterations and v is the
length of an example vector. According to our experimental
results ݅ிெ is slightly higher than ݅ுெ. Consequently we
assume that they share the same order of magnitude and are
therefore equal as this analysis is concerned.
We can declare that the statement:

ܱሺ݅ · ݊ · ܿ · ሻݒ ܱ൫݅ · ݊ · ܿ ሺݒ ܿሻ൯ ~ ·
holds if dimensionality of the vector ݒ is much higher than
the number of clusters ܿ. This is also the case for text
clustering in TextGarden, so we can confirm that the time
complexity of fuzzy c-means is similar to the one of hard c-
means. Certainly we must admit that there is probably some
constant factor linking the actual speeds because of the
higher complexity of the inner most loops (calculation of
distances and weights) of FCM compared to HCM. We
estimate this factor to be in the range from 1 to 3.

(3.6)

3.4 An experiment on the documents data
Table 3.1 shows the results of documents clustering for both
algorithms (FCM and HCM). As a set of documents we used
1000 random texts from the Yahoo Finance dataset of the
companies’ descriptions. We partitioned the set into 5
clusters using the same initial distributions and the same
shared parameters. For each cluster we provide the mean
inner similarity value, the number of documents and the
three most characteristic keywords. The clusters are aligned
therefore the results can be directly compared. It is evident
that both algorithms found similar clusters. The average
mean similarity is lower for c-means which might be the
result of better centre localization of c-means.

Documents: 1000 (FCM)
Mean Similarity: 0.182

Documents: 1000 (HCM)
Mean Similarity: 0.177

Mean Sim.0.443, 92 Docs.
'BANKING':0.854
'LOANS':0.254
'DEPOSITS':0.113

Mean Sim.0.369, 124 Docs.
'BANKING':0.770
'INSURANCE':0.404
'LOANS':0.166

Mean Sim.0.137, 269 Docs.
'GAS':0.247
'EXPLORATION':0.240
'PROPERTY':0.180

Mean Sim.0.145, 218 Docs.
'GAS':0.263
'POWER':0.244
'EXPLORATION':0.199

Mean Sim.0.180, 180 Docs.
'DRUGS':0.386
'PHARMACEUTICALS':0.260
'DISEASES':0.229

Mean Sim.0.181, 170 Docs.
'DRUGS':0.386
'PHARMACEUTICALS':0.263
'CHEMICALS':0.245

Mean Sim.0.244, 107 Docs.
'INSURANCE':0.623
'INVESTMENTS':0.261
'INSURANCE_COMPANY':0.173

Mean Sim.0.155, 187 Docs.
'PROPERTY':0.303
'INVESTMENTS':0.271
'SECURITIES':0.191

Mean Sim.0.129, 352 Docs.
'WIRELESS':0.202
'SOLUTIONS':0.181
'SOFTWARE':0.175

Mean Sim.0.134, 301 Docs.
'SOLUTIONS':0.203
'STORES':0.191
'SOFTWARE':0.181

Table 3.1: Comparison of HCM and FCM algorithms on the
Yahoo Finance dataset

4 CONCLUSIONS
This paper presents an overview of fuzzy clustering
algorithms that could be potentially suitable for document
clustering, a new fuzzy c-means clustering algorithm
implemented in the TextGarden environment, and an
empirical comparison of hard c-means and fuzzy c-means as
an application on documents and 2D points.
Further work will consider: connecting fuzzy c-means with
Ontogen and designing and implementing some adaptive
threshold approach for converting fuzzy cluster to its crisp
equivalent. This should be done in such a way that one
document could be assigned to none, one or more clusters
according to its membership degrees and similarities to the
clusters. Furthermore we will perform statistical evaluation
of hard c-means and fuzzy c-means in terms of document
classification using other quality measures (besides average
similarity) for generated clusters.

REFERENCES
[1] Dunn, J., C., A Fuzzy Relative of the ISODATA

Process and its Use in Detecting Compact Well-
Separated Clusters, Journal of Cybernetics 3, pp. 32-57,
1973.

[2] Bezdek, J., C., Pattern Recognition with Fuzzy
Objective Function Algoritms, Plenum Press, New
York, 1988.

[3] TextGarden - Text-Mining Software Tools. Available
online at http://kt.ijs.si/dunja/TextGarden/.

[4] Kononenko, I., Kukar, M., Machine Learning and Data
Mining: Introduction to Principles and Algorithms,
Horwood Publishing, pp 312-358, 2007.

[5] Valente de Oliveira, J., Pedrycz, W., Advances in Fuzzy
Clustering and its Applications, John Wiley & Sons, pp
3-30, 2007.

[6] Höppner, F., Klawonn, F., Krise, R., Runkler, T., Fuzzy
Cluster Analysis: Methods for Classification, Data
Analysis and Image Recognition, John Wiley & Sons,
pp 5-114, 2000.

[7] Fortuna, B., Mladenić, D., Grobelnik, M.
Semiautomatic construction of topic ontologies. In:
Ackermann et al. (eds.) Semantics, Web and Mining.
LNCS (LNAI), Springer , vol. 4289, pp. 121–131.,
2006.

http://kt.ijs.si/dunja/TextGarden/

	ABSTRACT
	1 INTRODUCTION
	2 FUZZY CLUSTERING ALGORITHMS
	2.1 Hard c-means (HCM)
	2.2 Fuzzy c-means (FCM)
	2.3 Possibilistic c-means (PCM)
	2.4 Other reviewed algorithm

	3 IMPLEMENTATION
	3.1 Evaluation on 2-dimensional points
	3.2 Definition of a distance measure
	3.3 Time complexity
	3.4 An experiment on the documents data

	4 CONCLUSIONS
	REFERENCES

