

 Semantic Modeling, Translation and Matching of QoS

Alexandra Moraru1*, Blaž Fortuna2#, Carolina Fortuna2*
1*Faculty of Computer Science, Technical University of Cluj-Napoca,

George Baritiu 26-28, 400027 Cluj-Napoca, Romania
2#Department of Knowledge Technologies, Jožef Stefan Institute,
2*Department of Communication Systems, Jožef Stefan Institute,

Jamova 39, 1000 Ljubljana, Slovenia
e-mail: ale_moraru@yahoo.com

ABSTRACT

The variety of access and transport technologies
available in modern computer networks pose significant
challenges related to compatibility and quality of service
(QoS) related issues. Applications and services can have
many different and unique requirements towards the
transportation services (TSs) they use to interconnect.
Traditionally, applications are required to specify their
QoS requirements in the language which the TSs
understand. This results in reformulation of intuitive
parameters (i.e. desired video resolution) to parameters
understood by the TSs (i.e. required bandwidth).

This paper presents techniques for (a) automatic
matchmaking of application requirements to the offers
by TSs providers and (b) automatic translation of
application requirements into the TSs QoS
requirements. To this end semantic technologies,
namely OpenCyc, are used for ontological modeling,
translation and matchmaking. We present relevant
examples on how semantic technologies can be used in
the context of communication networks.

1 INTRODUCTION

The word “quality” is defined by [1] as the “totality of
characteristics of an entity that bear on its ability to satisfy
stated and implied needs”. “Service” is defined by the same
standard as a “type of product […] always the result of an
activity or interaction between a service supplier and a
customer and can take many forms”. The QoS framework
assumes that a customer requests a service having a given
QoS profile from a provider.

Throughout this paper, the customers will be applications
using services over a network to which the access is
possible over multiple different transport services (TSs).
The differences between TSs can come from different
technologies (i.e. WiFi vs. UMTS), different pricing (i.e.
pay-as-you-go vs. flat rate), different availability, etc.

Selecting appropriate transport services for a specific
application in a environment with many available TSs can
pose significant technological challenges, especially with
the emergence of software defined radios [2][3]. Providing
multi-services in a multi-network environment has been
previously investigated [4] for wired networks using

multiple layers of abstraction to hide transport specific
complexity. However, complexity management and the
necessity for interoperability require more advanced
approaches.

In this paper we present an approach for automatic
matching of applications to the appropriate TSs based on
application requirements and the QoS parameters offered
by the TSs. In order to do the matching, we developed an
approach for automatic translation of application level
requirements into the QoS parameters understood by the
TSs.

Both approaches are based on the Semantic web
technologies [5] which were already successfully applied
for the task of web service (WS) [6] composition,
matching and monitoring as well as for modeling and
mapping of WS QoS specifications [7]. However, research
on semantic translation of application QoS requirements to
the network QoS parameters is still open as existing
attempts have been limited in scope [7][8][9].

Application QoS requirements differ from one application
to another (e.g. a streaming service compared to a
browsing service) and need to be properly recognized and
translated to TS requirements, which are platform and
technology dependent. In our approach, a reasoning engine
uses a QoS model combined with a set of rules to map and
match requirements. For instance, it must be able to infer
that if an application requires streaming TS for a QCIF
picture size with frame rate of 15 pictures per second, the
network must meet the following requirements: 64 kbps bit
rate, 300 ms latency, 20 ms jitter and 10-4 packet error rate.

This paper is structured as follows. Section 2 presents
related work. Section 3 we discuss QoS representation and
matchmaking using OpenCyc and Section 4 presents
experiments relevant to using OpenCyc for translation and
inference. Finally, we conclude the paper.

2 RELATED WORK

One recent trend in service oriented architecture (SOA)
[10] related work is to develop QoS aware web services. In
[6] and [11], the authors introduce the Web services-QoS
architecture (WS-QoS) meant to close the gap between the
WS layer and the underlying QoS-aware transport
technologies. WS-QoS extends the Universal Description,

Discovery and Interoperability (UDDI) by introducing a
broker. QoS requirements and offers are defined using
XML schema, approach that makes the architecture highly
interoperable. However, service discovery and
matchmaking lack semantics with this approach.

In [7], the authors discuss the shortcomings of non-
semantic specifications of QoS for WS and propose a
semantic QoS (SQS) framework. They built a QoS
hierarchy ontology model encoded in RDFS and test the
overhead of the ontology design. As opposed to [11], this
work does not go down to the transport network QoS, thus
not considering this aspect of QoS for WSs. They actually
use a middleware approach that passes application QoS
specifications to the underlying technology.

Developments of semantic representations for QoS for WSs
in the form of ontologies can be found in [8][9] and [12]. In
the first two, the authors report on the development of
QoSOnt using Web Ontology Language [13]. The latter
reports on an ontological encoding for QoS developed in
DAML-S and then ported to OWL. They also provide
results regarding matchmaking and measurement using the
ontology. A survey on other representations for QoS
services can be found in [14].

In [15] the authors develop OWL-QoS ontology for the
purpose of finding matches between offers from the TS
providers, called adverts, and the consumer requests (called
request). Example of an advert can be seen in Figure 1.

Figure 1 ProviderProfile Class

The OWL-QoS ontology uses a three layer representation
of QoS: QoS Profile Layer, QoS Property Definition Layer
and QoS Metrics Layer. Profile layer stands for
matchmaking purpose, the property definition layer
specifies the domain and range constraints of the properties
and metrics layer contains metrics definition and
measurement. The authors use reasoning engine Racer [16]
for performing matching adverts to the requirements.

The work in this paper uses available QoS representations
and investigates their usability for application to TSs QoS
translation. We base our ontology on the one presented in
[7] and we use OpenCyc [17] for ontology modeling,
semantic matchmaking and QoS parameter translation.

3 QOS REPRESENTATION AND MATCHMAKING
USING OPENCYC

In this section we first describe how the QoS domain and its
parameters are modeled using OpenCyc and then show an

example of how we can use the model to do the
matchmaking between the TSs providers and consumers.

After trying and working with several different available
semantic models of QoS [7][8][15] we decided for the
approach presented in [7]. The main advantage was the
hierarchy of applications which can be used to better
determine the QoS characteristics. The dimensions of QoS
are represented in the base-class layer of the ontology, on
top of which the QoS domain ontology layer is built. We
recreated a part of the base-class ontology in OpenCyc.

The Cyc ontology consists in a few numbers of collections,
predicates and implication rules. For example, relevant
characteristics for a video application can be represented,
among others, by the frame rate of the video, the video
codec used and the resolution or format of the screen. We
modeled this data by creating the following collections:
VideoCodec (as a subclass of Codec collection),
VideoResolution and VideoFormat. A video format is
characterized by video resolution and for this we created a
predicate which links the VideoFormat with the
correspondent resolution. Also video codecs are typically
standardized so these relations can be stated. For instance,
some resolutions are related to some frame rates based o
the codec used; for this we created another predicate, but
this time for linking three objects: one video codec, one
video resolution and one numerical value for the frame
rate. In the next section we will explain how we used this
structure for the inferring the data rate.

In the previous section we described the OWL-QoS
ontology and how it was used for matchmaking between
the advert and the request: a match is a pair (advert,
request) where the objectives requested by the request are
satisfied by the advert. The matchmaking algorithm
presented in [12] introduces degrees of matching, and
Racer reasoning engine is used to infer the matches
between requests and adverts and their degrees.

We implement the matchmaking similar to the one
described in [12], without introducing the degrees of
matching however. OpenCyc was used for both modeling
and for reasoning. We created a QoSProfile collection
which holds both adverts and requests. It has two predicates
which define the cost for a service and the response time
which a generic system takes to react to a given input.
QoSRequest and QoSAdvert are subcollections of
QoSProfile and they inherit the defined predicates for
QoSProfile. An advert is a match for a request if the cost
for the service provided by the advert is lower than the
price the requester can pay and the response time advertised
is also lower than the one requested.

The matchmaking conditions can be stated in CycL using
rules as in Figure 2. The matching predicate takes two
arguments: the first one is a request profile and the second
one is an advert profile. The first rule from Figure 2
matches the response time between an advert and a request.
X stands for a QoSRequest and Y for a QoSAdvert. It can

be noticed that there is one condition that verifies that X is a
request (isa ?X QoSRequest). This is there only for making
the rule more human readable, otherwise the condition is
redundant as X is the first argument of the “matchTime”
predicate.

For every new QoSProfile added, request or advert, the rule
will automatically calculate every possible match, since
these rules are designed to be forward rules. This enables
fast retrieval of matching adverts. For example if there are
two adverts in the knowledge base (KB), the first offering a
response time of 3000 milliseconds at the cost of $1 per
second and the second one a response time of 1000
milliseconds for $3 per second, when a new request stating
that it needs a response time of 2000 millisecond for $5 per
second is added, then the second advert will be
automatically found as a match, without having to
specifically ask for the match to be done. Another advantage
of using OpenCyc is that there are some concepts for units
of measure already defined and integrated in the KB.

(implies
 (and
 (isa ?X QoSRequest)
 (responseTime ?X (MillisecondsDuration ?T1))
 (isa ?Y QoSAdvert)
 (responseTime ?Y (MillisecondsDuration ?T2))
 (or(equals ?T1 ?T2) (lessThan ?T2 ?T1)))
 (matchTime ?X ?Y))

(implies
 (and
 (costPerSecond ?X (USDollarFn ?C1))
 (costPerSecond ?Y (USDollarFn ?C2))
 (or(equals ?C1 ?C2) (lessThan ?C2 ?C1)))
 (matchCost ?X ?Y))

(implies
 (and
 (matchCost ?X ?Y)
 (matchTime ?X ?Y))
 (match ?X ?Y))

Figure 2 Matching rules in CycL

4 USING OPENCYC FOR INFERRING NETWORK
QOS

This section describes an approach for automatic translation
of QoS requirements from the application point of view into
the QoS parameters that the TS providers understand.
Combining the translation with the matchmaking presented
in the previous section results in a system where application
requests, expressed in a language intuitive for their domain
(i.e. video streaming) can be automatically matched to the
appropriated TS according to their QoS specifications.

Based on the approach from [7] which introduces a QList
as a support for specifying the requirements of one
application we created a similar structure in OpenCyc, for
the translation of application requirements to network
requirements. For a video application, the list of
requirements can specify, for instance, the video resolution
and the codec; others may specify only the video format.

Along with other specific requirements for a video
application, like color depth or frame rate, we want to
translate all of them into network requirements. One of the
network requirements is the data rate needed by the
application and this data rate can be inferred from the
application requirements even if these are incomplete. The
formula based on which the data rate is calculated is
expressed in and the rules for OpenCyc to make the
necessary inferring are shown in Equation 1.

ܴܦ ൌ ݐ݄݃݅݁ܪ݁݉ܽݎܨ · ݄ݐܹ݀݅݁݉ܽݎܨ · ݁ݐܴܽ݁݉ܽݎܨ
· ݄ݐ݌݁ܦ ݎ݋݈݋ܥ

Equation 1 Computing data rate

Table 1 specifies two lists with different requirements and
the inferred data rates. The first list specifies the video
codec, the maximum frame size (as video resolution),
frame rate and color depth. From the first three
requirements, using the rule on the left side of Figure 3 and
the information from the KB, the compatible frame size
will be inferred. In the KB, relations are specified between
codec, frame rate and the related resolution for that
combination; in this case for a frame rate of 20 fps and
MPEG4 codec, the video resolution inferred is 320x240.
The second list specifies only three parameters: video
format, color depth and frame rate. Knowing the video
format, OpenCyc will infer, based on the KB, that the
frame size is 320x240. Then, by applying the rule on the
right side of Figure 3 the data rate is computed. So, the
system is resilient to different formats of specifications.
The requirements can be different as long as there is
enough knowledge in the KB.

 QoSList1 QoSList2
Video Codec MPEG4
Video Resolution 320 x 320
Video Format QVGA
Color Depth (bits) 8 8
Frame Rate (fps) 20 20
Inferred Data Rate (bit/sec) 12288000 12288000

Table 1 QoS requirements and inferred bits per second

Another issue which can appear when there are multiple
users and each one “speaks” its own language is the way
they can understand each other. For instance, in the above
example, we used frame size and video resolution referring
to the same thing and it is easy for humans to understand
that. However, for a machine this equivalence must be
explicitly specified. In OpenCyc, a fast way to say that
frame size is the same with video resolution may look like
this: “(isa FrameSize VideoResolution)”. Having this rule,
it will not matter which term one uses in the list of
requirements. But as anything easy and fast to do, it is not
really correct, because in this way FrameSize represents a
subclass of VideoResolution, not an equivalent class. This
happens due to the fact that OpenCyc applies Unique
Name Assumption (UNA) for all the concepts that were set
in the KB there must be different names only for different
entities. A way to solve this problem is to associate one or
more strings to a concept so that it will be possible for that
concept to be found also by different names. In our

example, the concept is defined as VideoResolution, and to
this concept a string is attached adding the following
assertion: (nameString VideoResolution “FrameSize”) to
the English Micro Theory.

5 CONCLUSIONS

In this paper we studied the existing ontologies for QoS and
performed several experiments to study the way these can be
used to perform matchmaking between providers and
consumers of transfer services and how to do automatic
translation from application level requirements to the QoS
parameters which TS can understand. To this end, we
modeled in OpenCyc several QoS profiles to simulate
matching between adverts and requests. We also constructed
several rules in OpenCyc which were used to inferre
network QoS parameters from application parameters.

Because of the large number of applications and network
technologies existing nowadays, semantic technologies
seem suitable for QoS modeling. However, larger
taxonomies and more complex experiments are required to
assess the full potential of this approach. In the future we
plan to extend the ontology for the translation of QoS
application characteristics to network characteristics and do
a tighter integration between the matchmaking and the
parameter translation. Furthermore we want to integrate this
into OpenCyc because of the good inference it provides.

6 ACKNOWLEDGEMENTS

This work was supported by the Slovenian Research Agency
and the IST Programme of the EC under NeOn (IST-4-
027595-IP) and PASCAL2 (IST-NoE-216886).

References

[1] Quality management systems – Fundamentals and vocabulary, ISO

9000:2000

[2] B. Xie, A. Kumar, D.P. Agrawal, Enabling multi-service on 3G and
beyond: challenges and future directions, IEEE Wireless
Communications Magazine, Jun. 2008, vol. 13, p. 66-72

[3] C. Fortuna, M. Mohorcic, B. Filipič, Multiobjective Optimization of
Service Delivery Over a Heterogeneous Wireless Access System,
ISWCS 2007, Reykjavik, Iceland

[4] F. Steegmans, N. las Mercouroff, B. Ceccaldi, Mu3S - A Middleware
Platform for Telecommunications Information Networking, In Proc.
Telecommunications Information Networking Architecture
Conference, 1999, p. 131-133

[5] D.J. Weitzner, J. Hendler, T. Berners-Lee, D. Connolly, Creating a
policy aware web: discretionary, rule-based access for the World-
Wide Web, In Web and information security, E. Ferrari and B.
Thuraisingham (Eds), IRM Press, 2005

[6] M. Tian, A. Gramm, T. Naumowicz, H. Ritter, J. Schiller, A Concept
for QoS Integration in Web Services, In Proc. Web Information
Systems Engineering Workshop, 2003, p. 149-155, http://page.mi.fu-
berlin.de/tian/pdf/tian_wqw2003.pdf

[7] L. Zhou, H. K. Pung, L. H. Ngoh, Towards Semantic Modeling for
QoS Specification, In Proc. Conference of Local Computer
Networks, Nov. 2006, p. 361-368

[8] G. Dobson, R. Lock, I. Sommerville, QoSOnt: a QoS ontology for
service-centric systems, 31st EUROMICRO, Porto, Portugal, Aug.-
Sept. 2005

[9] G. Dobson, A. Sanchez-Macian, Towards unified QoS/SLA
ontologies, IEEE Service Computing Workshop, Sept. 18-22, 2006

[10] P. Bianco, R. Kotermanski, P. Merson, Evaluating a Service-
Oriented Architecture, Technical Report, September 2007,
CMU/SEI-2007-TR-015,
http://www.sei.cmu.edu/pub/documents/07.reports/07tr015.pdf

[11] M. Tian, QoS integration in Web services with the WS-QoS
framework, Doctoral Dissertation, Freien Universität Berlin, Nov.
29th, 2005

[12] C. Zhou, L.-T. Chia, B.-S. Lee, DAML-QoS Ontology for Web
Services, In Proc. IEEE International Conference od Web Services,
2004, p. 472,
http://www3.ntu.edu.sg/home5/pg04878518/Articles/icws04_235_C
hen_Z.pdf

[13] OWL Web Ontology Language overview, W3C,
http://www.w3.org/TR/owl-features/

[14] V. X. Tran H. Tsuji, Semantics in QoS for Web Services: A Survey,
http://sigswo.org/papers/SIG-SWO-A801/SIG-SWO-A801-02.pdf

[15] C. Zhou, OWL-QoS ontology,
http://www3.ntu.edu.sg/home5/PG04878518/OWLQoSOntology.htm
l

[16] RacerPro, http://www.racer-systems.com/
[17] OpenCyc, http://www.opencyc.org/

(implies
 (and
 (hasCodec ?Q ?C)
 (hasFrameRate ?Q ?FR)
 (hasMaxResolution ?Q ?MR)
 (hasColorDepth ?Q ?CD)
 (hasResAndFR ?C ?R ?FR)
 (frameWidth ?R (Pixel-UnitOfCount ?W))
 (frameHeight ?R (Pixel-UnitOfCount ?H))
 (frameWidth ?MR (Pixel-UnitOfCount ?MW))
 (frameHeight ?MR (Pixel-UnitOfCount ?MH))
 (or
 (lessThan ?W ?MW)
 (equals ?W ?MW))
 (or
 (lessThan ?H ?MH)
 (equals ?H ?MH))
 (evaluate ?BS (TimesFn ?W ?H ?FR ?CD)))
 (computeDR ?Q ?BS))

(implies
 (and
 (hasVideoFormat ?Q ?VF)
 (hasFrameRate ?Q ?FR)
 (hasColorDepth ?Q ?CD)
 (formatHasResolution ?VF ?R)
 (frameWidth ?R (Pixel-UnitOfCount ?W))
 (frameHeight ?R (Pixel-UnitOfCount ?H))
 (evaluate ?BS (TimesFn ?W ?H ?FR ?CD)))
 (computeDR ?Q ?BS))

Figure 3 Rules for inferring data rate

