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ABSTRACT 

 

This paper is an overview of a recent approach for 
solving linear support vector machines (SVMs), the 
PEGASOS algorithm. The algorithm is based on a 
technique called the stochastic subgradient descent and 
employs it for solving the optimization problem posed 
by the soft margin SVM - a very popular classifier.  We 
briefly introduce the SVM problem and one of the 
widely used solvers, SVM light, then describe the 
PEGASOS algorithm and present some experiments. 
We conclude that the algorithm efficiently discovers 
suboptimal solutions to large scale problems within a 
matter of seconds. 

1 INTRODUCTION 
 

Since the nineties Support Vector Machines (SVMs) have 
become one of the most popular supervised machine 
learning methods used for regression and classification 
problems [3]. Although SVMs can be used to find nonlinear 
classification or regression functions, this paper focuses on 
the case of linear classification SVMs. Training the 
algorithms for nonlinear SVMs scales super-linearly in the 
number of training examples and the algorithms can handle 
tens of thousands of data points. In recent years it has been 
shown that the linear SVMs on the other hand can be trained 
in linear time with respect to the number of training 
examples. These new approaches can deal with millions of 
training points. The purpose of this paper is to compare one 
of the most popular SVM implementations, SVM-light [2] 
and a recent solution, Pegasos  [1] based on stochastic 
subgradient optimization. 

2 SUPPORT VECTOR MACHINE 
This chapter is composed of two subchapters. The first one 
will introduce the basic intuitions behind the support vector 
machines and some formal  problem definitions and the 
second one will introduce the problem in the dual 
representation.  

2.1 Intuitions and problem formulation 
In a two class classification task we are presented with a 
training sample, S, of m labelled data points :    S = {(xi, 
yi)}i=1:m, where xi є Rn are the training vectors and yi є {-1,1} 
are their corresponding labels. The task is to find the linear 
functional f: Rn → R, f(x) = <w,x> + b that satisfies a 
certain criterion.  We denoted the inner product by  <.,.>, 
and we will also use the notation w’x := <w,x>, where w‘ 
denotes vector w transposed. Vector w is commonly 
referred to as the normal of the classification hyperplane 
and b is referred to as bias.  Let us first consider the case 
where data is linearly separable (there exists an f that 
perfectly classifies all the examples from the set S), a case 
also known as the hard margin SVM. SVM optimization 
criterion is based on finding the f that separates the data 
best in the sense of the highest minimal distance between 
the hyperplane and the data points. Figure 1 shows two 
possible hyperplanes (a blue and a black one). They both 
perfectly separate the data, but the margin (or the minimum 
distance) between data points and the black line is much 
higher than the margin of the blue line. The black 
hyperplane is more likely to perform better on new 
instances than the blue line. By using geometry we can 
show that the margin of a hyperplane f is proportional to 
1/<w,w>. This can be formally stated as the following 
constrained optimization problem:  

• Hard margin SVM 
 

Minimize: w’w 
Subject to: yi (<w, xi> -b) > 1, i=1,...,m 

 

The constraints are equivalent to f(xi) = (<w, xi> -b) > 1 if 
yi = 1 and f(xi) = (<w, xi> -b) < -1 if yi = -1, for all (xi, yi) є 
S, which are the conditions for correct classification of the 
training sample. All the constraints are linear functions of w 
and b and the objective is a quadratic function of w. 
Problems of this form are known as quadratic programs. 
Since data is usually noisy it is often the case that a 
separating hyperplane does not exist. In such cases we 
search for a hyperplane that misclassifies a few points but 
has a high margin with respect to the correctly classified 
points. This case is known as the soft margin SVM. The 



 

task is to find a hyperplane  with a good trade-off between 
the training loss (high training loss usually leads to poor 
performance on new instances but small training loss can 
lead to overfitting) and the margin (large margins lead to 
good generalization ability, whereas small margins can lead 
to overfitting).  The margin plays the role of regularizing the 
loss function and controls the complexity of the 
classification model. One part of the training task is to find a 
good trade-off parameter between the margin and the loss 
and this is usually accomplished by cross-validation.  There 
are two equivalent formulations of the soft margin SVM 
optimization problem: regularized hinge loss formulation 
and slack variable formulation (softening the hard margin 
constraints). Here follows the latter formulation: 

• Soft margin SVM – slack variables 
 

Minimize: w’w + CΣiξi 
Subject to: yi(<w, xi> -b) ≥ 1- ξi , for all i=1,...,m 

 

The ξi  variables are called slack variables and they allow the 
w and b variables to violate the hard margin constraints and 
by adding the sum Σiξi to the objective we penalize those 
violations. The parameter C controls the trade-off between 
the margin size and the amount of data that lies inside the 
margin or is even misclassified. This problem is also a 
quadratic programming problem: 

• Soft margin SVM – regularized hinge loss 
 

Minimize: w’w + CΣ(1 – yi(w’xi – b))+ 
 

In the equation above ()+ represents the function (x)+ := 
max{0,x}. Notice that this problem is an unconstrained 
optimization problem and that by contrast to the slack 
formulation it is not differentiable, since ()+ is not smooth. 

 
Figure 1: Separating hyperplanes 

2.2 Optimization problem: dual 
 

The formulations presented so far are searching for a w of 
the same dimension as training vectors xi. We call such 
formulations primal formulations. By writing down the 
Lagrangian, analysing the Karush-Kuhn-Tucker (KKT) 
conditions [4] and some algebraic manipulation we can 
express the solution w as a m-dimensional  (size of the 
training set) vector in terms of dual variables.  This can be 
beneficial  if the number of features is much higher than the 
number of training examples and these  formulations can 
easily be adopted to handle nonlinear optimizations (this is 
known as the kernel trick, see [5]). We will omit the 

derivations and present the dual soft margin SVM 
optimization problem. 
 

Minimize: Σiαiαjyiyj<xi,xj> - Σiαi 
Subjetc to: 0 ≤ αi ≤ C, i= 1,...,m 

Σiyiαi = 0 
 

We notice that this is again a quadratic problem with 
particularly simple linear constraints, box constraints.  
Vector w can be expressed as w = Σiαiyixi . The solution is 
written as a linear combination of those training vectors 
whose corresponding αi coefficients are non zero, and these 
vectors are called support vectors. One of the consequences 
of KKT theory is that the solution would remain the same 
even if we remove all but the support vectors from the 
training set S. 

3 SOLVING THE OPTIMIZATION PROBLEM 
This chapter will introduce two approaches to solving the 
SVM optimization problem. The first one is based on an 
active set method of the dual soft margin SVM and the 
other one is the main focus of this article – the stochastic 
subgradient descent optimization of the regularized hinge 
loss formulation of soft margin SVM. 

3.1 Active set dual optimization: svm-light 
 

One of the main problems with directly optimizing the dual 
soft margin SVM are the super-linear convergence rate and 
high memory requirement (quadratic in the number of 
training examples since the matrix of the quadratic 
objective function has m rows and m columns). We have 
mentioned that the solution of the problem is completely 
determined by the set of support vectors (or their 
corresponding α variables). Active methods try to identify 
that set by starting with a random set working set and then 
iteratively keep adding or removing variables from that set. 
In this way that they decompose the large problem into a 
series of smaller, tractable, quadratic problems, by 
optimizing only over the variables in the working set and 
fixing all the other variables. After that step the method 
tries to find a better working set. This can be posed as an 
optimization which can be efficiently solved. The solutions 
found by SVM-light are highly accurate. 

3.2 Stochastic subgradient descent primal 
optimization: PEGASOS 

 

Pegasos algorithm optimizes the primal view regularized 
hinge loss formulation instead of the quadratic program. It 
is based on a search method called stochastic subgradient 
descent.  The method iteratively searches for the optimum 
of a function. It starts with a random starting point, finds 
the best search direction, computes the new point and 
repeats these steps until it converges. It uses subgradient 
descent, since the gradient of the hinge loss function does 
not exist and it uses the stochastic version, because 



 

computing the gradient of the optimization function can be 
expensive when the training set is large. We will first define 
the subgradient of a function and present the subgradient of 
the regularized hinge loss function. 
 
3.2.1 Stochastic subgradient 
 

Vector v is a subgradient of function f at a point x0, if: 
f(x) – f(x0) ≥ v’(x – x0) 

for every x in some open neighbourhood of x0.   
The authors of Pegasus optimize the following function 
(slightly different trade-off constant and ignoring the bias 
coefficient) 

f(w) = λ/2 w’w + 1/m Σi (1 – yi w’xi)+ 
Subgradient of each of the summands in the above sum is 
equal to 0 if yiw’xi > 1 and equal to –yixi otherwise (non zero 
loss case). Subgradient of the full expression is thus equal 
to: 

∂f = λ w - 1/m Σi+ yixi, 
where Σi+ denotes the sum over the indices with nonzero 
loss. Computing a stochastic subgradient is very similar, the 
only difference is that we create a subsample of the training 
points, A,  and compute the subgradient of an approximated 
function: 

fA(w) = λ/2 w’w + 1/k Σi є A (1 – yi w’xi)+, 
where k is the size of the subsample A. 
   
3.2.2 The algorithm 
 
 

The algorithm has an additional step besides the subgradient 
descent step in each iteration and that is projection onto a 
ball with diameter 1/√λ. It can be proven that the optimal 
solution always lies in that ball and if the current iterate 
moves out of that ball, projecting it brings it only closer to 
the optimal solution. The step size, η, is initialized as 1/λ and 
keeps decreasing with the number of iterations. In the t-th 
iteration we set it to ηt = 1/(λt).  We denote the total number 
of iterations as T, and the size of the subsample in each step 
as k, which we chose manually . 
 
Algorithm : 
INPUT:   S, λ, T, k 
INITIALIZE:   Choose w1 randomly so that ||w1|| ≤ 1/√λ 
FOR   t = 1, 2, ..., T 
 Choose At, a random subset of S of size k 
 Set A’ = {(x,y) є At : ywt’, x < 1} 
 Set ηt = 1/(λt) 
 Set wt+1/2 = (1 - ηtλ)wt + ηt/k ∑(x,y)єA’

 yx 
 Set wt+1 = min{1, 1/(√λ||wt+1/2|| ) } wt+1/2 
OUTPUT:   wT+1 
 
3.2.3 Remark 
 

One of the reasons why such an old technique has not been 
successfully applied to this problem until a few years ago is 
that the researchers used slower, less aggressive, learning 
rates.  The Pegasos fast learning rate and the fact that it 

provably converges are the key to the success of the 
algorithm.  

4 EXPERIMENTS 
We will first describe the data set and proceed with 
analyzing several properties of the Pegasos algorithm.  

4.1 Data 
The experiments were conducted on the Reuters  RCV2 
corpus [6], which consists of 804.414 news documents.  
The documents are represented as 47.236 dimensional 
sparse vectors (bag of words document representation), 
with the sparsity 0,16%. Each document in the collection is 
assigned to a category from a hierarchy of categories. The 
four major categories are: CCAT, GCAT, ECAT, MCAT. 
We focused on testing the algorithms on the category 
CCAT, which consists of 381.327 positive documents (the 
rest are negative), and is very balanced. 

4.2 Robustness to random initializations 
We first investigated the robustness of Pegasos solutions to 
different choices of initial random starting vectors w. 
Figure 2 depicts several curves corresponding to different 
starting points. Each curve represents the value of the 
objective function as the iterations increase. One can notice 
that the behaviour of the Pegasos algorithm is more or less 
independent of the choice of initial solution.  
 

 
Figure 2: Several runs with different initial vectors 

4.3 Convergence of pegasos 
 

We evaluated the convergence speed of the Pegasos 
algorithm. Optimum objective value was computed by 
SVM-light, which took roughly four hours of CPU time. 
Computing the 200 iterations of the Pegasos algorithm took 
9.2 seconds of CPU time and the the objective value was 
0.3% close to the optimum. Pegasos needed 560 iterations 
to get within 0.1% error of the true optimum.  This 
experiment demonstrates the rapid convergence of Pegasos 
towards approximate solutions. The k parameter was set to 



 

8.000 and the λ parameter was set to 0.0001, as this value 
was observed to be optimal for the Reuters corpus and the 
category CCAT.  

4.4 Testing the classification accuracy 
 

The Reuters data set was split into the first 700.000 
documents for training and the rest 104.414 documents for 
testing (the original order was preserved). We investigated 
how the classification error on the test set decreases with the 
number of iterations of the Pegasos algorithm.  Figure 3 
depicts the error on the test set with the number of iterations 
of the algorithm. We can see that the algorithm achieves 
5.8% classification error within 50 iterations. SVM-light 
achieved the error of 5.6%. 
 

 
Figure 3: The decrease of test error with the number of 
iterations 

4.5 Parameters k and T 
 

One of the experiments involved examining the influence of 
different values of k and T parameters on the objective 
value. Figure 4 depicts the relationship between k and T 
when their product is fixed. The first thing to notice is that 
curves with larger kT are always dominated by curves with 
smaller kT (convergence). All three settings for different 
values of kT yielded similar curves, and we can notice that 
seting  k too small can slow down convergence rate.  This 
result is unexpected, since the authors of the Pegasos 
algorithm experimentally showed that the value of k is not 
important as long as the value of kT is fixed, although they 
left deeper analysis for future work. Note that they did not 
use the same data set for their experiments. They 
recommended setting the value of k to 1, although our 
experiments imply setting k to a higher value. One possible 
reason for slower convergence with low values of k, for 
example 1, is that the algorithm converges to solutions with 
low number (5 to 10 percent) of misclassified training 
examples very rapidly, even though the margin is still 
suboptimal. This means that when we sample a training 
point in each of the following iterations it is very likely to be 
correctly classified, so the value of w would not change in 
that iteration. The value of t on the other hand would still 
increase and consequently the step size will decrease too 

quickly. One possible way to prevent that is not to increase 
t in those cases. This can improve convergence rate 
although the convergence remains slower. 
 

 
Figure 4: Parameters k and T. The horizontal scale 
represents different values of k as the product kT is fixed. 

5 CONCLUSIONS 
 

We have presented an examination of Pegasos - an efficient 
algorithm for solving the linear SVM optimization problem.  
The approach is based on stochastic subgradient descent 
and has strong convergence guarantees. The approach is 
easy to implement and converges extremely fast to a 
suboptimal solution. We have also demonstrated that high 
precision optimization of the objective function on the 
training set can be unnecessary, since optimal classification 
error on a test set can be achieved much sooner. SVM-light 
algorithm, a high precission SVM solver, was chosen as a 
baseline for comparison.  
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