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ABSTRACT 
 

In this paper, an optimizer for programs written in an 
assembly-like language called Redcode is presented. 
Relevance of code optimization in evolutionary program 
creation strategies and code categorization is discussed. 
CoreWar Optimizer is the first user-friendly optimization 
tool for CoreWar programs offering various optimization 
methods and a carefully picked benchmark. The methods at 
the user’s disposal are: random, modified hill climbing 
algorithm, simulated annealing, predator-prey particle 
swarm optimization and genetic algorithms. All these 
methods use a speed-up trick which drives the value 
optimization across three fitness landscapes instead of just 
one. 

 
1  INTRODUCTION 
 
CoreWar was introduced to the scientific community by 
A.K. Dewdney in 1984 in an article published in Scientific 
American [1]. It represented an interesting, but not 
completely unfamiliar concept. It was based on a somewhat 
similar computer simulation, a game called Darwin, which 
was developed in Bell Labs some twenty years earlier. 
In CoreWar, programs written in an assembly-like language 
called Redcode compete against each other in a simulated 
environment that is being controlled by MARS (Memory 
Array Redcode Simulator). The program that seizes 
complete control of the process queue is designated a 
winner of the encounter. CoreWar programs are referred to 
as warriors. Competing programs are being loaded into a 
looping memory array and are only given access to that part 
of the memory. There are many differences between 
Redcode and other assembly-like languages, but providing 
a full survey of those details is well beyond the scope of 
this paper. 
CoreWar environment bears some peculiarities and as such 
can not be used to draw general conclusions about any 
aspect of code analysis. However, its relative syntactic 
simplicity, as well as clearly presented program goals make 
it easier to define strategic program categories. With that in 

mind, research on CoreWar could only suggest potential 
fruitfulness of such analysis in a more general setting and 
either encourage or discourage further application of 
employed methods. 
 
2  EVOLUTION STRATEGIES AND 
OPTIMIZATION IN COREWAR 
 
Even though CoreWar is a sort of a programming 
challenge, programs are often generated automatically, 
usually via genetic programming. This type of reasoning 
has worked really well, due to the natural mapping between 
CoreWar programs and corresponding genotypes. 
Evolutionary pressure is reflected in the competition itself 
and fitness can be determined according to benchmarking 
and competition scores [2]. 
Evolved CoreWar programs are still superior to human-
coded programs in some of the basic confrontation 
environments. However, these evolvers have failed to 
produce programs of higher complexity and there is usually 
little diversity in the evolved sets [3]. 
Program optimization does not have to be related to 
changes in the code structure. Once a good program 
template is produced, there is usually an issue of choosing 
values for some variables in the code. Altering these 
instruction field values can lead to dramatic changes in 
program fitness. 
Prior to CoreWar Optimizer, which will be presented in this 
paper, there was only one available optimizer for CoreWar 
– Optimax. Its focus was on simulation speed and it 
searched the value space at random. It was a command-line 
application with no graphical user interface [4]. 
The fitness landscape corresponding to variables in 
CoreWar programs and the respective average performance 
is characterized by many local optima. Such structure of the 
search space calls for methods that are able to cope with 
target function multimodality. 
Some intuition about more general fitness landscapes in 
CoreWar can be obtained by analyzing the score surface 
plots in Figure 1. Some negative linear dependencies 
between the plotted variables are quite apparent. However, 



 

it must be noted that the images were generated for average 
scores against a single opponent (in both cases). For 
benchmarks of considerable size and a realistic case of 
having at least 5-6 variables to optimize, the search space 
would certainly become much more chaotic. 
 

 
Figure 1: Some 1-1 score surfaces for YAP (a replicator 
CoreWar program) for 2-value optimization task plotted 
across all possible value pairs. Blue colour denotes bad 
performance, while red areas represent high scores[5] . 

 
 
3  COREWAR PROGRAM CATEGORIES 
 
3.1  Basic Strategies 
 
In more than twenty years of competition, many interesting 
program strategies have been either devised by 
programmers or generated via evolutionary approach. 
Programs can rely on brute-force random attacks or 
implement various algorithms for opponent’s code 
detection and elimination. Most programs can be roughly 
separated into three large categories – stones, papers and 
scissors – implying that there is no dominant approach in 
CoreWar. Due to the rise in strategic program diversity 
over the past years and continuous increase in deployment 
of hybrid programs utilizing more than one basic strategic 
block, a more flexible and detailed categorization was 
required. One such categorization has been presented in [6] 
and comprises 14 program types. 
 
3.2  Automatic Categorization 
 
In case of human-coded warriors, there is no need for 
automatic categorization, since a program category can 
easily be determined by looking at the code. It is different 
with evolved programs. Their code is much less structured, 
their behavior less straightforward and hundreds or 
thousands of them are being generated and tested in each 
iteration of CoreWar evolvers. It has already been 
mentioned that evolved populations often suffer from lack 
of diversity. This is precisely why dynamic diversity 
control is of great importance in such software tools. 
Accurate insight into the strategic composition of 
populations would allow for better dynamic changes in 
mutation weights, population size, parent selection, etc. 

Attempts at creating classifiers for CoreWar program 
categorization and analysis of evolved data sets have been 
made, with moderate success [6] [7]. Two types of data 
representation had been used (as well as their combination): 
 
• Static representation, based purely on syntactic 

analysis 
• Dynamic representation, based on benchmark scores. 
 
Best results were obtained when using the combined 
representation, achieving 84% accuracy with SVM. Static 
representation was not sufficient for reliable categorization 
and some alterations would need to be conducted in the 
future if it is to be used as a sole factor in predicting a 
CoreWar program category [6]. 
 
3.3  Impact of Optimization on CoreWar Program 
Categorization 
 
It had been shown that classifiers trained on human-coded 
data sets were unable to achieve the same level of accuracy 
when used on evolved data sets. Since the dynamic 
representation has the most influence, a part of the issue 
must lie within the differences in benchmark scores of 
programs of the same class in evolved and human-coded 
sets. Once those scores were inspected, it became quite 
apparent what was the reason for such a mismatch. Even 
though there are good evolved CoreWar programs, these 
appear in the end of the process, as the populations begin to 
converge towards some program templates. Most of the 
CoreWar programs in those sets are not as optimized as 
their human-coded counterparts. This results in scores 
differing in a way that makes score-based categorization 
much more cumbersome, because the distribution of scores 
over the set of strategies in the opposing benchmark tends 
to become more uniform. This uniformity is never present 
in highly optimized programs. Programs from the same 
category achieve similar average scores against any 
particular strategic group. 
It can be seen that the use of classifiers in determining 
population diversity in CoreWar evolvers would not be as 
informative as it might have appeared unless CoreWar 
program populations are at least slightly optimized before 
the automatic categorization takes place. Inserting 
optimization as a step in CoreWar program evolution has 
other benefits as well. After all, if a good program template 
is encountered, it would be rejected by the evolver unless it 
has scored above some static or dynamic threshold. If all 
the templates were optimized, better templates would be 
more likely to be passed on to the next generation. 
There is also a possibility of extending and improving the 
syntactic representation of the data, but this would probably 
not be as helpful in evolved data sets, because majority of 
the code in most evolved CoreWar programs is junk code 
that is not used by the programs in the simulation. 
Including benchmark scores in the representation is 
necessary in this case. 



 

 
 
 
4  COREWAR OPTIMIZER 
 
4.1  General Description 
 
CoreWar Optimizer is a tool that was developed with intent 
of allowing for both easier and more effective manual 
optimization of CoreWar programs and also integration into 
evolutionary optimization software for CoreWar. 
Main features of CoreWar Optimizer are: 
• Graphical user interface allowing program editing, 

parameter setting, optimization statistics overview, etc. 
• Several methods for value optimization 
• Speed-up achieved by splitting the optimization 

process into several phases 
 
4.2  Optimization Phases 
 
Speed is always one of the most important issues in 
CoreWar optimization, since it takes several minutes on a 
fast PC to benchmark a program instance. On the other 
hand, it was empirically determined that for some strategic 
categories, up to several thousand instances need to be 
examined. This is why there are three phases in all the 
algorithms in CoreWar Optimizer. In the first phase, an 
instance is set up against a single opponent (selected by the 
user). In the second phase, instances are competing against 
a selected strategic subset of the benchmark. Only in the 
third phase do programs compete against the entire 
benchmark. Thresholds for acceptable scores in the first 
two phases are set by the user. Most users prefer to set up 
high thresholds, allowing only about 1-3% of generated 
instances to enter the final optimization phase. 
 

 
 
Figure 2: Normalized plot of the highest achieved score of 
one tested replicator with GA being used. 
 
Selection of potentially good instances in the early phases 
leads to lower variance in the benchmarked set. This is 
illustrated in Figure 2. Even though the best achieved score 
in the end was only 6% better than the first one in terms of 

average highest score over the optimization run, these few 
score points are not insignificant. On the contrary, in most 
CoreWar competitions, competing instances are usually a 
fraction of a point apart. 
 
4.3  Optimization Methods 
 
Optimization in CoreWar depends on the program strategic 
category and the nature of the variables being optimized. 
This is why several methods have been included in 
CoreWar Optimizer, so that the user might select one of 
them  according to his own judgement. 
 
• Random search was included purely for reasons of 

comparison with the previous optimization tool, 
Optimax [4]. 

• Hill climbing is the simplest of the implemented 
algorithms. Steepest ascent is performed on a 
landscape until a point is reached where the threshold 
condition is satisfied. At that point, the ascent 
continues on the landscape of the next optimization 
phase. However, threshold conditions are constantly 
being checked for the previous phases. If none of the 
neighboring instances satisfy those conditions, 
optimization is reset to one of the earlier phases. Also, 
mutation amplitude depends on the time that has 
passed since the last instance entered the final 
optimization phase. This has been done to enable the 
algorithm to quickly leave depressions on the fitness 
landscape. 

• Simulated annealing differs from hill climbing in an 
important way, since it offers a better trade-off 
between exploration and exploitation of the search 
space. The update formula that was used for 
calculating the probability of choosing a state if it 
offers no improvement is given below: 
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The cooling schedule was implemented according to 
[8]. This method optimizes over three fitness 
landscapes in the same way as the hill climbing 
method. 

• Genetic algorithm implementation includes modules 
for small and big mutations, cross-over by swapping or 
affine combinations, etc. Mutation rates also evolve 
over time and are instance-specific – in other words, a 
part of the genotype [9]. The locality of mutation rates 
is motivated by the fact that each candidate solution 
serves as a representative of its neighborhood in the 
search space and the local properties of the fitness 
landscape vary accordingly. Thus, different mutation 
rates might be well suited for different areas in the 
domain. The mutation update rules are: 
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• Particle swarm optimization is based on observations 

from social animal behavior – flocking of birds, 
schooling of fish, etc. Animals form groups in order to 
find more food and water. In particle swarm methods, 
a population of instances is initialized to some random 
points in the search space. These particles then share 
information about the most promising areas of the 
search space, thus driving the search towards both 
local and global high-fitness areas. In practice, this 
usually results in better search than in cases of hill-
climbing and simulated annealing which are one-
particle models [10]. One of the main problems with 
particle swarm methods is premature convergence. 
This is partially prevented by setting suitable inertia 
weights in the update rules. Method employed in 
CoreWar Optimizer follows the idea of introducing 
predator-prey relationships in the model. One predator 
particle is introduced and it acts as a repellant which 
follows the best particle in the swarm and forces other 
particles away from local optima. It has been shown 
that this has a positive influence on the quality of the 
search. This model has first been described in [11]. 

 
Extensive testing of all the implemented methods on 
representatives of all strategic categories with various 
number of parameters has not been performed, since such a 
testing would require too much time if any relevant results 
were to be obtained. All of the mentioned methods are 
equally efficient on average basis, considering all possible 
search spaces [12]. 
 
4.4  Benchmark 
 
The benchmark used by the application has been selected to 
represent all the strategic categories with proportions 
relative to their frequency in existing data sets. This is 
shown in Figure 3. 
 

 
 
Figure 3: Strategic distribution of the used benchmark 

 
 
 
 
5  CONCLUSION 
 
Accurate automatic CoreWar program categorization 
requires benchmark testing. The results obtained this way 
can be quite ambiguous unless optimized CoreWar 
programs are involved. In order to allow for integration of 
the categorization modules in evolutionary CoreWar 
software, an optimizer has been implemented. CoreWar 
Optimizer provides an interface for use of several 
optimization methods. Initial tests have shown promising 
results and there has been no negative feedback from the 
community. 
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