

OPTIMIZATION AS A STEP IN
COREWAR PROGRAM ANALYSIS,

EVOLUTION AND CATEGORIZATION

Nenad Tomašev, Dragan Mašulović
Department of Mathematics and Informatics

The Faculty of Natural Sciences, University of Novi Sad
Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia

Tel: +381 21 520 869;
e-mail: nenad.tomasev@gmail.com

ABSTRACT

In this paper, an optimizer for programs written in an
assembly-like language called Redcode is presented.
Relevance of code optimization in evolutionary program
creation strategies and code categorization is discussed.
CoreWar Optimizer is the first user-friendly optimization
tool for CoreWar programs offering various optimization
methods and a carefully picked benchmark. The methods at
the user’s disposal are: random, modified hill climbing
algorithm, simulated annealing, predator-prey particle
swarm optimization and genetic algorithms. All these
methods use a speed-up trick which drives the value
optimization across three fitness landscapes instead of just
one.

1 INTRODUCTION

CoreWar was introduced to the scientific community by
A.K. Dewdney in 1984 in an article published in Scientific
American [1]. It represented an interesting, but not
completely unfamiliar concept. It was based on a somewhat
similar computer simulation, a game called Darwin, which
was developed in Bell Labs some twenty years earlier.
In CoreWar, programs written in an assembly-like language
called Redcode compete against each other in a simulated
environment that is being controlled by MARS (Memory
Array Redcode Simulator). The program that seizes
complete control of the process queue is designated a
winner of the encounter. CoreWar programs are referred to
as warriors. Competing programs are being loaded into a
looping memory array and are only given access to that part
of the memory. There are many differences between
Redcode and other assembly-like languages, but providing
a full survey of those details is well beyond the scope of
this paper.
CoreWar environment bears some peculiarities and as such
can not be used to draw general conclusions about any
aspect of code analysis. However, its relative syntactic
simplicity, as well as clearly presented program goals make
it easier to define strategic program categories. With that in

mind, research on CoreWar could only suggest potential
fruitfulness of such analysis in a more general setting and
either encourage or discourage further application of
employed methods.

2 EVOLUTION STRATEGIES AND
OPTIMIZATION IN COREWAR

Even though CoreWar is a sort of a programming
challenge, programs are often generated automatically,
usually via genetic programming. This type of reasoning
has worked really well, due to the natural mapping between
CoreWar programs and corresponding genotypes.
Evolutionary pressure is reflected in the competition itself
and fitness can be determined according to benchmarking
and competition scores [2].
Evolved CoreWar programs are still superior to human-
coded programs in some of the basic confrontation
environments. However, these evolvers have failed to
produce programs of higher complexity and there is usually
little diversity in the evolved sets [3].
Program optimization does not have to be related to
changes in the code structure. Once a good program
template is produced, there is usually an issue of choosing
values for some variables in the code. Altering these
instruction field values can lead to dramatic changes in
program fitness.
Prior to CoreWar Optimizer, which will be presented in this
paper, there was only one available optimizer for CoreWar
– Optimax. Its focus was on simulation speed and it
searched the value space at random. It was a command-line
application with no graphical user interface [4].
The fitness landscape corresponding to variables in
CoreWar programs and the respective average performance
is characterized by many local optima. Such structure of the
search space calls for methods that are able to cope with
target function multimodality.
Some intuition about more general fitness landscapes in
CoreWar can be obtained by analyzing the score surface
plots in Figure 1. Some negative linear dependencies
between the plotted variables are quite apparent. However,

it must be noted that the images were generated for average
scores against a single opponent (in both cases). For
benchmarks of considerable size and a realistic case of
having at least 5-6 variables to optimize, the search space
would certainly become much more chaotic.

Figure 1: Some 1-1 score surfaces for YAP (a replicator
CoreWar program) for 2-value optimization task plotted
across all possible value pairs. Blue colour denotes bad
performance, while red areas represent high scores[5] .

3 COREWAR PROGRAM CATEGORIES

3.1 Basic Strategies

In more than twenty years of competition, many interesting
program strategies have been either devised by
programmers or generated via evolutionary approach.
Programs can rely on brute-force random attacks or
implement various algorithms for opponent’s code
detection and elimination. Most programs can be roughly
separated into three large categories – stones, papers and
scissors – implying that there is no dominant approach in
CoreWar. Due to the rise in strategic program diversity
over the past years and continuous increase in deployment
of hybrid programs utilizing more than one basic strategic
block, a more flexible and detailed categorization was
required. One such categorization has been presented in [6]
and comprises 14 program types.

3.2 Automatic Categorization

In case of human-coded warriors, there is no need for
automatic categorization, since a program category can
easily be determined by looking at the code. It is different
with evolved programs. Their code is much less structured,
their behavior less straightforward and hundreds or
thousands of them are being generated and tested in each
iteration of CoreWar evolvers. It has already been
mentioned that evolved populations often suffer from lack
of diversity. This is precisely why dynamic diversity
control is of great importance in such software tools.
Accurate insight into the strategic composition of
populations would allow for better dynamic changes in
mutation weights, population size, parent selection, etc.

Attempts at creating classifiers for CoreWar program
categorization and analysis of evolved data sets have been
made, with moderate success [6] [7]. Two types of data
representation had been used (as well as their combination):

• Static representation, based purely on syntactic

analysis
• Dynamic representation, based on benchmark scores.

Best results were obtained when using the combined
representation, achieving 84% accuracy with SVM. Static
representation was not sufficient for reliable categorization
and some alterations would need to be conducted in the
future if it is to be used as a sole factor in predicting a
CoreWar program category [6].

3.3 Impact of Optimization on CoreWar Program
Categorization

It had been shown that classifiers trained on human-coded
data sets were unable to achieve the same level of accuracy
when used on evolved data sets. Since the dynamic
representation has the most influence, a part of the issue
must lie within the differences in benchmark scores of
programs of the same class in evolved and human-coded
sets. Once those scores were inspected, it became quite
apparent what was the reason for such a mismatch. Even
though there are good evolved CoreWar programs, these
appear in the end of the process, as the populations begin to
converge towards some program templates. Most of the
CoreWar programs in those sets are not as optimized as
their human-coded counterparts. This results in scores
differing in a way that makes score-based categorization
much more cumbersome, because the distribution of scores
over the set of strategies in the opposing benchmark tends
to become more uniform. This uniformity is never present
in highly optimized programs. Programs from the same
category achieve similar average scores against any
particular strategic group.
It can be seen that the use of classifiers in determining
population diversity in CoreWar evolvers would not be as
informative as it might have appeared unless CoreWar
program populations are at least slightly optimized before
the automatic categorization takes place. Inserting
optimization as a step in CoreWar program evolution has
other benefits as well. After all, if a good program template
is encountered, it would be rejected by the evolver unless it
has scored above some static or dynamic threshold. If all
the templates were optimized, better templates would be
more likely to be passed on to the next generation.
There is also a possibility of extending and improving the
syntactic representation of the data, but this would probably
not be as helpful in evolved data sets, because majority of
the code in most evolved CoreWar programs is junk code
that is not used by the programs in the simulation.
Including benchmark scores in the representation is
necessary in this case.

4 COREWAR OPTIMIZER

4.1 General Description

CoreWar Optimizer is a tool that was developed with intent
of allowing for both easier and more effective manual
optimization of CoreWar programs and also integration into
evolutionary optimization software for CoreWar.
Main features of CoreWar Optimizer are:
• Graphical user interface allowing program editing,

parameter setting, optimization statistics overview, etc.
• Several methods for value optimization
• Speed-up achieved by splitting the optimization

process into several phases

4.2 Optimization Phases

Speed is always one of the most important issues in
CoreWar optimization, since it takes several minutes on a
fast PC to benchmark a program instance. On the other
hand, it was empirically determined that for some strategic
categories, up to several thousand instances need to be
examined. This is why there are three phases in all the
algorithms in CoreWar Optimizer. In the first phase, an
instance is set up against a single opponent (selected by the
user). In the second phase, instances are competing against
a selected strategic subset of the benchmark. Only in the
third phase do programs compete against the entire
benchmark. Thresholds for acceptable scores in the first
two phases are set by the user. Most users prefer to set up
high thresholds, allowing only about 1-3% of generated
instances to enter the final optimization phase.

Figure 2: Normalized plot of the highest achieved score of
one tested replicator with GA being used.

Selection of potentially good instances in the early phases
leads to lower variance in the benchmarked set. This is
illustrated in Figure 2. Even though the best achieved score
in the end was only 6% better than the first one in terms of

average highest score over the optimization run, these few
score points are not insignificant. On the contrary, in most
CoreWar competitions, competing instances are usually a
fraction of a point apart.

4.3 Optimization Methods

Optimization in CoreWar depends on the program strategic
category and the nature of the variables being optimized.
This is why several methods have been included in
CoreWar Optimizer, so that the user might select one of
them according to his own judgement.

• Random search was included purely for reasons of

comparison with the previous optimization tool,
Optimax [4].

• Hill climbing is the simplest of the implemented
algorithms. Steepest ascent is performed on a
landscape until a point is reached where the threshold
condition is satisfied. At that point, the ascent
continues on the landscape of the next optimization
phase. However, threshold conditions are constantly
being checked for the previous phases. If none of the
neighboring instances satisfy those conditions,
optimization is reset to one of the earlier phases. Also,
mutation amplitude depends on the time that has
passed since the last instance entered the final
optimization phase. This has been done to enable the
algorithm to quickly leave depressions on the fitness
landscape.

• Simulated annealing differs from hill climbing in an
important way, since it offers a better trade-off
between exploration and exploitation of the search
space. The update formula that was used for
calculating the probability of choosing a state if it
offers no improvement is given below:

(() ())/

1(| () ()) i if o f s Td
i i i ip s o f o f s e −
+ = < =

The cooling schedule was implemented according to
[8]. This method optimizes over three fitness
landscapes in the same way as the hill climbing
method.

• Genetic algorithm implementation includes modules
for small and big mutations, cross-over by swapping or
affine combinations, etc. Mutation rates also evolve
over time and are instance-specific – in other words, a
part of the genotype [9]. The locality of mutation rates
is motivated by the fact that each candidate solution
serves as a representative of its neighborhood in the
search space and the local properties of the fitness
landscape vary accordingly. Thus, different mutation
rates might be well suited for different areas in the
domain. The mutation update rules are:

(0,1)

(1) () (1) (0,1)

(1) ()

i i i

N
i i

allele t allele t t N

t t eτ
σ

σ σ ⋅

+ = + + ⋅⎢ ⎥⎣ ⎦
+ =

• Particle swarm optimization is based on observations

from social animal behavior – flocking of birds,
schooling of fish, etc. Animals form groups in order to
find more food and water. In particle swarm methods,
a population of instances is initialized to some random
points in the search space. These particles then share
information about the most promising areas of the
search space, thus driving the search towards both
local and global high-fitness areas. In practice, this
usually results in better search than in cases of hill-
climbing and simulated annealing which are one-
particle models [10]. One of the main problems with
particle swarm methods is premature convergence.
This is partially prevented by setting suitable inertia
weights in the update rules. Method employed in
CoreWar Optimizer follows the idea of introducing
predator-prey relationships in the model. One predator
particle is introduced and it acts as a repellant which
follows the best particle in the swarm and forces other
particles away from local optima. It has been shown
that this has a positive influence on the quality of the
search. This model has first been described in [11].

Extensive testing of all the implemented methods on
representatives of all strategic categories with various
number of parameters has not been performed, since such a
testing would require too much time if any relevant results
were to be obtained. All of the mentioned methods are
equally efficient on average basis, considering all possible
search spaces [12].

4.4 Benchmark

The benchmark used by the application has been selected to
represent all the strategic categories with proportions
relative to their frequency in existing data sets. This is
shown in Figure 3.

Figure 3: Strategic distribution of the used benchmark

5 CONCLUSION

Accurate automatic CoreWar program categorization
requires benchmark testing. The results obtained this way
can be quite ambiguous unless optimized CoreWar
programs are involved. In order to allow for integration of
the categorization modules in evolutionary CoreWar
software, an optimizer has been implemented. CoreWar
Optimizer provides an interface for use of several
optimization methods. Initial tests have shown promising
results and there has been no negative feedback from the
community.

References

[1] A. K. Dewdney. Computer recreations: In the game
called Core War hostile programs engage in a battle of
bits. Sci. Am., 250(5):14-22, 1984.

[2] Bryan Blumenkopf and Ashley Holtgraver. Artificial
life through evolutionary computation. In Computing
Beyond Silicon Summer School, California Institute of
Technology, 2002.

[3] F. Corno, E. Sanchez and G. Squillero. Exploiting co-
evolution and a modified island model to climb the
CoreWar hill. In Proc. CEC’03 Congress on
Evolutionary Computation, pages 2222-2229, 2003.

[4] S. Zapf. Optimax. www.corewar.info/optimax/
[5] J. Gutzeit. CoreWar Score Surfaces.

http://corewars.jgutzeit.de/score_surfaces/index.en.html
[6] N. Tomašev, D. Pracner, M. Radovanović and M.

Ivanović. Automatic Categorization of human-coded
and evolved CoreWar warriors. In Proc. PKDD’07,
18th European Conference on Machine Learning,
Warsaw, Poland, 2007.

[7] D. Pracner, N. Tomašev, M. Radovanović and M.
Ivanović. Categorizing evolved CoreWar warriors using
EM and attribute evaluation. In Proc. MLDM’07, 5th
Int. Conf. on Machine Learning and Data Mining in
Pattern Recognition, Leipzig, Germany, 2007.

[8] Franco Busetti. Simulated Annealing overview.
www.geocities.com/francoburseti/saweb.pdf

[9] A.E. Eiben and J.E. Smith Introduction to Evolutionary
Computing. Springer Verlag, second edition, 2003.

[10] James Kennedy and Rusell Eberhart. Particle Swarm
Optimization. In Proc. Of the IEEE Int. Conf. On
Neural Networks, pages 1942-1948, Picataway, NJ,
1995.

[11] Ernesto Costa Arlindo Silva, Ana Neves. Chasing the
swarm: A predator-prey approach to function
optimisation. In MENDEL2002 8th Internacional
Conference on Soft Computing, Brno, Czech Republic,
2002.

[12] David H. Wolpert and William G. Macready. No free
lunch theorems for optimization. IEEE Transactions on
Evolutionary Computation, 1(1):67-82, April 1997.

