
An implementation of the Pathfinder algorithm for sparse networks and
its application on text networks

Anže Vavpetič
Faculty of Computer and Information Science,

Vladimir Batagelj
Faculty of Mathemathics and Physics, Department of Mathematics,

Vid Podpečan
Jožef Stefan Institute

Ljubljana

Abstract
The Pathfinder algorithm is extensively used for pruning
weighted networks. It is particularly useful in the analysis of
co-citation networks. The present paper reviews two versions
of the algorithm. A version with improved time and space com-
plexities, called the Binary Pathfinder, and a version optimized
for sparse networks, called Sparse Pathfinder. These two al-
gorithms were implemented and tested on text networks. The
obtained results show that the algorithm optimized for sparse
networks works notably faster on such data.

1 Introduction
In larger (at least some hundreds of nodes) weighted networks
the visual inspection can’t be used anymore for identifying
essential parts of the network. An approach to this problem
are the pruning algorithms. They are used to remove less
significant links, allowing the more salient links to be found.
An example of a network pruning algorithm is the Pathfinder
algorithm, developed in cognitive science to determine the
most important links in a network [6]. The output defined by
the Pathfinder algorithm is known as a Pathfinder network or
PFnet. Initially, Pathfinder networks were used exclusively to
represent relationships between concepts or keywords, but later
works have extended its use to many other fields of application,
for example co-citation networks.

1.1 Basic idea of the Pathfinder algorithm
LetN = (V,E,w) be a network. V is the set of nodes,E is the
set of links, and w : E → R+

0 the weight. We denote n = |V |
and m = |E|. Assuming that the weight represents a distance,
the pruning idea of the Pathfinder algorithm is based on the tri-
angle inequality, which states that the direct distance between
two points must be less than or equal to the distance between
those two points going through an intermediate point. It can
be easily extended to all paths: the direct distance between two
nodes must be less than or equal to the dist-length (sum of all

weights) of every path of between these two nodes; therefore
also less than or equal to the length of geodesic path (i.e. the
shortest path). The algorithm eliminates the links which violate
the extended triangle inequality.
The Pathfinder algorithm preserves the geodesic distance be-
tween every pair of nodes, while simplifiying the network and
so clarifying it for the subsequent analysis [7].
The extended triangle inequality gives rise to the first param-
eter of the algorithm, i.e. the link-length – maximum number
of intermediate links that will be considered, usually named q.
Since the link-length of geodesic can not exceed n−1 the max-
imum possible value of q is n− 1.
To calculate the distance between two nodes along a path the
Pathfinder algorithm uses the Minkowski operation

a�r b = r
√
ar + br (1)

r is the second parameter of the Pathfinder procedure. For dif-
ferent values of r we get: a�1 b = a+ b; a�2 b =

√
a2 + b2;

a �∞ b = max (a, b). The operation � is associative. This
means that for a path π with links with weights w1, w2, . . . wk,
we calculate its length as d(π) = w1 � w2 � . . .� wk.

2 Implementation

2.1 The Binary Pathfinder
The first version of the Pathfinder algorithm considered in this
paper is the Binary Pathinder. The original Pathfinder has space
complexity O(qn2) and time complexity O(qn3). The Binary
Pathfinder [5] is an improvement to the original algorithm, re-
ducing its time complexity to O(n3 log q) and the space com-
plexity to O(n2).
Before we describe the Binary Pathfinder, we list some defini-
tions used by [5] and [6]:

• The Pathfinder network PFnet(r, q) = (V,E,w) is a sub-
network of network N .
• The weight of the link from node u to node v is denoted

by wuv . They are collected in a n× n matrix W .

• W i+1 = W �W i is computed as follows:

wi+1
uv = min{wut � wi

tv : t ∈ V }

• The minimum-distance matrix for paths not exceeding i
links is denoted Di and its elements are computed as fol-
lows:

di
uv = min(w1

uv, w
2
uv, . . . , w

i
uv) for u 6= v

and di
vv = 0.

The crux of the improvements to the original Pathfinder
made by [5] lies in the calculation of matrices Di. They have
pointed out that for determining the PFnet we only need the
matrix Dq for the comparison with the initial weight matrix. It
is unnecessary to generate all of theDis. They have shown that
Di+j = Di �Dj :

di+j
uv = min{di

uv, d
j
uv, w

i
ut � w

j
tv : t ∈ V }

where d1
uv = wuv . Thus we can make larger steps in comput-

ing the distance matrices. The Binary Pathfinder algorithm is
based on matrices D1, D2, D4, D8, . . . [5]:
i = 1; nq = 0

Generate D1 = W ; Dq =∞
If (q mod 2) = 1 :

Compute Dq = Dq �D1

nq = 1

While (2 ∗ i) ≤ q :
Compute D2i = Di �Di

If ((q − nq) mod (4 ∗ i)) > 0 :
Compute Dq = Dq �D2i

nq = nq + (2 ∗ i)

i = 2 ∗ i

Comparing elements of Dq and W , wherever duv = wuv , add (u, v)

as a link to the PFnet.

The improvement in time complexity seems only minute,
but as larger networks are dealt with, the difference grows
immensely, as can be seen in the results section of [5].

2.2 The Pathfinder optimized for sparse net-
works

The second algorithm tested by this study is the Pathfinder pro-
cedure optimized for sparse networks. It is based on the idea
presented in [1] by Vladimir Batagelj. The motivation for this
algorithm is the fact that most real life networks are sparse
and that in sparse networks the matrix Dq can be computed
faster using an adapted version of Dijkstra’s algorithm [3] (for
q = n − 1) or an adapted breadth-first search (BFS) algorithm
(for q < n−1). To speed-up the algorithm we represent the net-
work with a graph data structure using adjacency lists, where
each node has a list of its neighbor nodes, resulting in a neigh-
bor retrieval query with a time complexity of O(1). To effi-
ciently calculate the matrix Dq for q = n− 1 we run the Dijk-
stra’s algorithm based on Minkowski operation once for every

node as a source node, thus producing a corresponding row of
the resulting matrix. For q < n−1 the Dijkstra’s algorithm can
not be easily adapted. We replace it with an adapted shortest
path algorithm based on BFS search. The last step of this algo-
rithm is the same as in other implementations of the Pathfinder
algorithm, i.e. comparing the elements ofDq andW and wher-
ever duv = wuv , we add (u, v) as a link in the resulting PFnet.

2.2.1 Specifics

As mentioned, the Dijkstra’s algorithm is modified so that
in calculating dist-lengths, we use Minkowski’s opera-
tion � instead of the addition. With the BFS algorithm
we (1) limit the search depth to q and (2) skip all the
paths starting from node v that would yield a path length
d > max{w(v, u) : u is a successor of v}.
Sparse Pathfinder(r, q,N =< V, E, w >) :

If q ≥ n− 1: Dijkstra(r, q,N)
Else: BFS(r, q,N)
Comparing elements of Dq and W , wherever Dq[u, v] = wuv , add
(u, v) as a link to the PFnet.
End Sparse Pathfinder

Dijkstra(r, q,N =< V, E, w >) :

pq := {} . . . priority queue sorted by distance
For each v ∈ V :

For each u ∈ V : dist[u] :=∞; Mark u as unvisited
dist[v] := 0;
Mark v as visited and insert it into pq.
While pq 6= {} :

t := min(pq); delete min(pq)

For each successor z of t:
new dist := dist[t]�r wtz

If z not visited:
dist[z] := new dist
Mark z as visited and insert it into pq.

Else if new dist < dist[z]:
decrease key(pq, z, new dist)

For each u ∈ V : Dq [v, u] := dist[u]

End Dijkstra

BFS(r, q,N =< V, E, w >) :

Q := {} . . . FIFO queue
For each v ∈ V :

For each u ∈ V : dist[u] :=∞
dMax := max{wvu : u is a successor of v}
putLast(Q,v,0,0)
dist[v] := 0

While p 6= {} :

(u, d, l) := firstFrom(Q)
l := l + 1

For each neighbor t of u:
new dist := d�r wut

If new dist ≤ dMax and new dist < dist[t]:
dist[t] := new dist
If l < q : putLast(Q,t,new dist,l)

For each u ∈ V : Dq [v, u] := dist[u]

End BFS

In order to improve the efficiency of Dijkstra, the prior-
ity queue was implemented as a minimum binary heap with the
following time complexities: O(log n) for insertion, deleting
the minimum element, decreasing a key, and O(1) for testing
whether the priority queue is empty.
For such an implementation the time complexity of Dijkstra’s
algorithm is O(m log n + n log n), which is dominated by
(m log n), giving the total time complexity of the Sparse
Pathfinder algorithm of O(nm log n). For dense networks,
m = O(n2), we get the same time complexity as for the Binary
Pathfinder. The space complexity remains the same as for the
Binary Pathfinder, O(n2). In theory the complexity could be
further improved to O(nm) by using Fibonacci heap. But
we considered the ’Bottom line’ of [8, slide 26] which says:
Fibonacci heap is best in theory, but not worth implementing.
The BFS algorithm makes a complete search of all possible
paths originating in node v, of link-length at most q, and
dist-length at most dMax. Its efficiency strongly depends
on the properties of network (average degree, distribution
of weights, parameter r) and it is very difficult to analyze
analytically.

1 3

6.50

1

1

4

1

1

a

b c

d

ef

1

1

1
1

1

a

b c

d

ef

W =

2666664
0 1 3 0 0 6.5
0 0 1 0 0 0
0 0 0 1 0 4
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

3777775 D
5 =

2666664
0 1 1 1 1 1
∞ 0 1 1 1 1
∞ ∞ 0 1 1 1
∞ ∞ ∞ 0 1 1
∞ ∞ ∞ ∞ 0 1
∞ ∞ ∞ ∞ ∞ 0

3777775

Figure 1: A graph before and after we apply the Pathfinder
procedure (r = ∞, q = 5) with the initial weight matrix W
and the target matrix D5

Figure 2: Network of terms generated from 100 documents and
its PFnet(r =∞, q = n− 1)

3 Experimental results
Both algorithms were implemented in C++ compiled with gcc
4.3.2 and integrated into the machine learning and data min-
ing framework Orange [4] and can thus be easily imported as
a Python module. The tests were done on a Intel Core 2 Duo
3GHz machine with 2GB of RAM running Ubuntu Linux. In-
put files were given in Pajek’s format [2]; output networks were
written back in the same format as well, and finally also drawn
with Pajek.
The given input graphs can be interpreted as follows. Each link
represents a co-occurence, which means that both words appear
together in at least one document, whereas the link’s weight
represents the normalized number of co-occurences through
all documents. This weight is a similarity measure. In or-
der to transform the weights into dissimilarities required by
Pathfinder, we applied the formula w′ = 1

w , where w is the
original weight.

First we present the comparison of the performance of both
algorithms on the input graphs. The statistics gathered can
be seen in Tables 1 and 2. On these networks, the opti-
mized Pathfinder algorithm works much faster than the Binary
Pathfinder. The reason for this is that m is much smaller than
n2. In Table 1 the parameters r and q were set to r = ∞ and
q = n− 1 as these values are most commonly used in practice;
in Table 2 we provide some time measurements for smaller val-
ues of q, where the adapted BFS algorithm is used. We observe
that the Sparse Pathfinder can be efficiently applied on such
networks, as its computing time increases much more slowly
than the Binary Pathfinder’s, thus allowing to produce PFnets
from larger networks in a reasonable time frame.
Figure 1 illustrates how the network changes when the
Pathfinder procedure is applied. Figure 2 presents the effect
of the Pathfinder on the network. On the left side the original
network is presented, and on the right side the corresponding
PFnet.

4 Conclusion
As noted by [5] the Pathfinder networks are of great interest
in the study of different types of weighted networks. They are
found to be particularly useful in scientometrics in studying ad-
vancing frontiers of research, disciplines, profiles of authors,
etc.
Since the original algorithm has severe practical limitations,
rising from its time and space complexity, we have imple-
mented two improved versions: the Binary Pathfinder, a ver-
sion presented in [5], and an algorithm optimized for sparse
networks.
Both algorithms have been applied to several text networks,
generated from a various number of documents in order to
check the applicability to such networks. We have found that
especially the algorithm for sparse networks has potential to be
used for pruning of such networks, as its computational time
rises much slower than the Binary Pathfinder’s with the num-
ber of nodes and links, thus allowing to produce PFnets from

Input (with r =∞ and q = n− 1) Binary PF Sparse PF Output
Network n m t(s) t(s) n

stem+cell 10docs.net 64 127 0.187 0.006 71
epilepsy+migraine 50docs.net 517 1115 56.951 1.278 536

stem+cell 100docs.net 1215 2828 1035.302 17.606 1419
epilepsy+migraine 100docs.net 1322 3021 1183.712 21.145 1480
migraine+protein 100docs.net 1322 3021 1200.313 21.168 1480

2ksparse.net 2622 5244 11069.679 75.938 2674
2kdense.net 2622 39330 10913.843 390.118 3800
5ksparse.net 5355 10710 ≈97,000 (≈27h) 593.982 5277
5kdense.net 5355 80325 ≈97,000 (≈27h) 3425.378 6919

Table 1: Algorithm performance, q = n− 1 / Dijkstra

Network Binary PF t(s) Sparse PF t(s)

r =∞ q = 3 q = 5 q = 10 q = 3 q = 5 q = 10

stem+cell 10docs.net 0.064 0.088 0.103 0.001 0.002 0.006
epilepsy+migraine 50docs.net 18.841 27.486 33.784 0.052 0.136 1.524

stem+cell 100docs.net 217.067 299.909 366.942 0.410 0.988 25.963
epilepsy+migraine 100docs.net 288.932 376.673 491.588 0.369 1.269 21.753

migraine+protein 100docs.net 302.332 395.689 486.578 0.342 1.142 20.046
2ksparse.net 1953.135 2512.451 3249.126 2.264 22.020 86.208

Table 2: Algorithm performance, small q / BFS

larger inputs in reasonable time.

Acknowledgments
The work presented in this paper was supported by the Slove-
nian Research Agency grant Knowledge Technologies, and by
the grant of the European Commission under the 7th Frame-
work Programme FP7-ICT-2007-C FET-Open, contract no.
BISON-211898.

References
[1] V. Batagelj. Fast pathfinder algorithm for large sparse net-

works (unpublished). Notes of the talk presented at the
1172-th Sredin seminar, Ljubljana, February 11, 2009.

[2] V. Batagelj and A. Mrvar. Pajek – analysis and visualiza-
tion of large networks. In M. Jünger and P. Mutzel, editors,
Graph Drawing Software. Springer, 2003.

[3] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduc-
tion to Algorithms. McGraw-Hill, 2001.

[4] J. Demšar, B. Zupan, and G. Leban. Orange: From experi-
mental machine learning to interactive data mining. White
Paper, 2004.

[5] V. P. Guerrero-Bote, F. Zapico-Alonso, M. E. Espinosa-
Calvo, R. G. Crisóstomo, and F. de Moya-Anegón. Binary
pathfinder: An improvement to the pathfinder algorithm.
Information Processing & Management, 2006.

[6] R. W. Schvaneveldt. Pathfinder associative networks. Nor-
wood, NJ: Ablex, 1990.

[7] R. W. Schvaneveldt, D. W. Dearholt, and F.T. Durso. Graph
theoretic foundantions of pathfinder networks. Computers
and Mathematics with Applications, 1988.

[8] R. Sedgewick and K. Wayne. Lectures 15: Shortest
paths, 2009. http://www.cs.princeton.edu/
courses/archive/spr09/cos226/lectures/.

