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ABSTRACT 

 
We propose a pipeline for learning event templates from 
a large corpus of textual news articles. An event template 
is a machine-usable semantic data structure, in our case 
a graph, describing a certain event type. For instance, 
most earthquake news reports mention something in 
direction of "x people dead” or “town y shook at time 
z". Such templates can be used as an input for 
information extraction tasks or automated ontology 
extension. We present preliminary results of applying 
the proposed pipeline on a subset of News articles.  

1 INTRODUCTION 
Given the large amount of information encoded in written 
English and present on the web and elsewhere, there is a 
clear and long-understood need for machines to canonicalize 
that information as autonomously as possible in order to be 
able to use its inherent value.  

One of the main approaches toward this end is (high-
level) information extraction, where an algorithm is 
developed to fill a structured template (e.g. a database table 
row or a small ontology subgraph) with information 
extracted from unstructured text. The templates and the 
corresponding learning examples (tagged text), however, 
have to be prepared manually. In this work, we propose a 
step towards learning (automatically identifying) such 
templates prominent in a collection of news articles. 
Newswire is a particularly suitable domain for this task 
because many articles get written about each separate event, 
enabling us to exploit redundancy when determining the 
importance of pieces of information. 

2 RELATED WORK 
Automatic construction of templates for information 
extraction is already relatively well-researched (e.g. [6, 8]). 
However, the goal of existing approaches is to obtain 
syntactic templates for detecting words or phrases of a 
certain type (e.g. book titles). Our goal is to construct 
semantic templates (in the form of graphs) describing whole 
events; the templates do not act on the raw article text, but 
rather on semantic graphs describing separate events. We 
also aim to obtain templates that are useful in themselves, for 
ontology extension, not only information extraction. 
Furthermore, we learn the templates in a completely 
unsupervised manner as opposed to existing weakly 
supervised approaches. 

Graph-based templates are also used in [7] in a context 
similar to ours, though the semantics are shallower. Also, the 

authors focus on information extraction and do not attempt to 
generalize the templates. Identification of templates in textual 
product descriptions is addressed in [10] in form of 
identifying product attributes and their values.  

3 OVERVIEW 
We propose an approach based on a pipeline for constructing 
abovementioned event templates in the form of small 
semantic graphs. Nodes represent actors or objects (nouns) 
and the links between them represent actions (verbs); see 
Figure 3 for an example of an automatically constructed 
template. Additionally, each node is rich with statistics about 
the context within separate articles it appears in, which will 
in future hopefully be a good starting point for training 
information extraction methods. 

To test the proposed approach, we have used the Google 
News portal (although any news aggregation service would 
do). At this stage, we have limited ourselves to processing 
7132 news articles from all topical categories, mostly 
published in March 2009. 

4 THE PIPELINE 
Each of the pipeline phases is described through an 
illustrative example. Consider the subset of articles reporting 
on various bombing attacks: in the next subsections, we will 
follow the information they convey and the form this 
information takes as it passes through the pipeline.  

To avoid confusion, let us first detail some terminology: 
an article is a single web page which is assumed to report on 
a single story. A story is an event that is covered by one or 
more articles. Each story may fit some event template. 

For example, the event template describing bombings in 
general may be supported by a story of a suicide bomber1 in 
Baghdad and a story of NATO bombing Kabul. The story on 
Baghdad is in turn covered by a hundred or so web articles 
which are no longer an abstract concept but chunks of HTML 
code. Schematic overview of the pipeline is in Figure 1. 

4.1 Data acquisition and preprocessing 
We first need to obtain the data; to that end, we crawl 
http://news.google.com approximately every 40 minutes to 
obtain links to articles as well as a grouping of articles into 
stories. Each article is then downloaded from the publisher's 
website and cleaned of all HTML markup, advertisements, 
navigation and similar. We have developed a heuristic 
algorithm for identifying the content part of most any news 
article; the basic idea is to traverse the DOM tree and extract 
                                                 
1 We apologize in advance for such a morbid example; sadly, it is exactly 
topics of this kind that get terrific news coverage and are therefore both 
familiar to everyone and convenient to analyze. 



 

Figure 1.   The five main stages of the pipeline. Cleaned
articles (1) are grouped (2) according to the story they
cover. A semantic graph is constructed for each story (3).
Topically related story graphs are clustered (4); the
largest subgraph common to most of the graphs in each
cluster (5) is the event template. 
the first block-level element (TD or DIV) containing a lot of 
text and very little of anything else, particularly links and 
images. This approach successfully identifies the title and the 
body of an article with accuracy of about 90%. 

In the end, some additional cleanup is performed like 
encoding, whitespace and punctuation normalization. 

4.2 Data annotation 
Next, we enrich the text with semantic annotations of several 
types as follows. Using the ANNIE tool from the GATE [1] 
framework, we detect named entities and tag them as 
person, location or organization. Following that, we use the 
Stanford parser [2] to extract triplets (subject-predicate-
object); the authors report the precision and recall of this 
stage to be about 85%. As a last step, we use the web service 
by Rusu [3] to perform coreference and pronoun 
resolutions ("Mr. Obama", "President Barack Obama" and 
"he" might all refer to the same entity within an article).  

4.3 Story graph construction 
Starting from a group of annotated articles on a single story, 
we want to construct a semantic graph relaying the gist of 
that story. This is similar to the classic problem of multi-
document summarization; however, we have stronger 
assumptions about inter-document coherence (assumed to be 
high as all documents report on the same story) and we want 
to present the summary in the form of a semantic graph.  

First we have to identify the stories, i.e. clusters of 
articles with high topical and temporal similarity. As already 
mentioned, we currently simply use existing Google's 
clustering results. Once a story has been identified, we once 
more perform coreference resolution on all of its articles 
simultaneously (since all mentions of e.g. Obama might have 
gotten mapped to "Mr. President" in one article and to 
"Barack Obama" in another). 

We now have to identify the important triplets. Since 
each story is typically represented by at least 20 articles, 
typically 50-200, we can rely relatively heavily on statistics: 
the important triplets are those that appear many times 
throughout the articles. However, care must be exercised: in 

their attempt to meet the deadlines, journalists often copy-
paste whole paragraphs from another source. Unfortunately, 
such plagiarism cannot be detected by string matching in its 
simplest form because short fragments of copied paragraphs 
often do get altered. Writers sometimes even creatively 
merge paragraphs from two or more sources. In any case, 
much of the text is repeated verbatim which would cause 
triplets from those passages to be rated too high. To mitigate 
the problem, we compute paragraph similarities based on 
character 4-gram overlap and weight paragraphs with 1/dsim 
where dsim is the number of paragraphs "very similar" to 
current one. The method, while simple, gives results with 
accuracy on par with what humans can do in such a loosely 
defined problem. 

At this point, for the purposes of the algorithm, we 
discard the full article text and only keep the (weighted) 
triplets. The weight of a triplet is defined to be the sum of 
weights of all paragraphs it appears in, multiplied by 
"position score" (triplets that appear at the beginning of an 
article get a higher position score). Further, triplets with 
verbs like "report", "tell" suggest they are the result of 
sentences of the form "eyewitnesses told the police that …" 
and therefore uninformative; their overall weight is decreased 
drastically. 

Triplet scores are further improved by making pairs of 
similar triplets increase each other's score. Similar triplets 
are identified using WordNet; the actual similarity score 
between two triplets is a product of experimentally set 
factors. The factors describe the number of words in which 
triplets overlap, the type of overlap (exact string match or via 
WordNet) and the position of overlap (e.g., it turns out that 
matching objects are more indicative of similar triplets than 
matching subjects). As WordNet does not provide uniform 
coverage of all topics, we have to compensate for that: 
triplets that appear similar to an extraordinary high number 
of other triplets are reduced in weight as its numerous 
similarities are most likely due to (too) rich synsets in that 
portion of WordNet. We also tried adjusting the similarity 
score in reverse proportion with the a priori probability of 
overlapping words, but that seemed not to affect performance 
noticeably (although evaluation was only informal). We do, 
however, employ a list of stopwords.  

Finally, the scored triplets are viewed as tiny graphs; each 
graph has two weighted nodes (the scored subject and object) 
with a directed, weighted, labeled edge connecting them 
(label being the verb). Nodes are consolidated wherever 
possible, effectively creating a single connected component 
from most of two-node graphs. 

We refer to the result as a story graph; an example can be 
seen in Figure 2. The central node in that graph is the subject 
“suicide bomb”, involved in several triplets including “target 
camp” (the top right heavily linked node), “killed people”, 
“blow mosque”. We prune the graph from several hundred to 
about 100 nodes; only the several most important ones are 
shown in the figure. 

We are currently working on a method to measure the 
quality of constructed semantic graphs. Both constructing a 
"golden standard" graph and comparing a given graph to it 
seems infeasible, so we will most likely resort to evaluating 
separate stages: triplet ranking, redundant triplet removal and 
coreference identification, i.e. collapsing nodes.  



 

4.4 Grouping similar stories 
We want to identify as an event template every subgraph 
which appears in a convincingly high proportion of story 
graphs for a set of topically related stories. We consider the 
template to be a subgraph of a story graph if the story graph 
either contains its exact copy or if the story graph contains a 
specialization of the template graph. A specialization of a 
graph is an isomorphic graph where one or more node or 
edge labels have been replaced with more specific terms or 
synonyms, e.g. "Barack Obama —talk— Ryan Stiles" is a 
specialization of "politician —discuss— person". 

Before we attempt to generate such subgraphs, we must 
cluster story graphs into groups of topically related stories. 
At the moment, this is done using simple bag-of-words 
features. To increase the utility of the resulting clusters for 
template detection, we found it useful to weight all verbs 
with a factor of 2 (as nouns are more likely to be replaced by 
their generalizations in the template graph) and to altogether 
disregard all named entities for the purposes of clustering. 
For the construction of bag of words vectors, we also use 
stemming and a stopwords list and prune the vectors to at 
most 1000 dimensions. Bisecting k-means with cosine 
distance is run and the resulting clustering hierarchy is cut at 
a predefined dissimilarity value. 

As already mentioned, the algorithm is currently being 
tested on a sample of about 7000 articles. A completely 
random sample of articles would cover too many topics, none 
of which would be sufficiently richly represented for the 
algorithm to deduce an event template. Therefore, we have 
augmented the article set with about 1500 articles all 
reporting on one of three topics we felt were well represented 
in news: bombings, court sentencings and politicians' visits. 

As the purpose of this phase of clustering is to group 
stories of the same event type (which we interpret as sharing 
subgraphs of their semantic graphs), it would make more 
sense to cluster semantic graphs, not bags of words. 
Unfortunately, this is computationally prohibitive as the 
clustering has to be fuzzy: the subgraphs burglar-stab-officer 

and man-shoot-Lennon, for example, both fit the same 
template but are syntactically completely different. As a 
compromise between clustering with bag-of-words and graph 
features, we tried clustering with bag-of-triplets (each triplet 
is a feature). Contrary to our expectations, this performed 
much worse than bag-of-words, probably due to data 
sparsity. We tried alleviating this with latent semantic 
indexing, but it did not help sufficiently. 

4.5 Event template extraction 
We observe each cluster of stories separately and hope to 
extract an event template from it. First, each node from each 
graph is expanded into a hypernode – a collection of nodes, 
at most one per story graph, that best match the given seed 
node. The matching is computed based on string similarity, 
WordNet, and GATE entity type (person / organization / 
location; for example, "Baghdad" and "Kabul" should both 
fit into a single hypernode as they conceptually play the same 
role in the bombing template we want to discover). 
Hypernodes are scored according to their support (how many 
story graphs contribute a node to the hypernode), coherence 
(how well the contributing nodes match each other) and 
importance (average weight/score of supporting nodes in 
their respective story graphs). 

Out of each of the several highest-scoring hypernodes we 
now try to grow the template graph. Starting with a single 
hypernode, we consider all neighbor hypernodes and rescore 
them on the basis of their original score and the coherence of 
the hyperedge with which they would connect to our 
template-graph-in-the-making. We greedily select the highest 
scoring neighbor, attach it to the template graph and iterate 
until the highest scoring neighbor is scored lower than some 
threshold value.  

One last thing that remains to be done is to generalize 
(lift) the hypernodes: at this point, they are only a collection 
of nodes from concrete stories. Hypernodes with many 
named entities are generalized into the prevailing entity class 
name (e.g. "[LOCATION]" in Figure 3). Other hypernodes 
are generalized into the most specific WordNet synset which 
generalizes at least half of the contributing nodes. Such a 
generalized graph is our final result. 

The growing and generalization process described in the 
last two paragraphs is repeated with several different initial 
hypernodes; whenever the resulting template graph has more 
than one node and is different from the graphs already 
generated, we output it. 

5 PRELIMINARY RESULTS 
The pipeline in its present form is not effective enough to 
process the very high number of articles needed to obtain a 
decent number of event templates. There are plans to change 
that in the near future – for example, triplet extractors much 
faster than the one we use exist, and exploiting that should 
speed up the whole pipeline considerably. Even so, the 
evaluation of such a long pipeline working with large 
amounts of data is tricky; a proper amount of thought and 
time should be invested into it. Until then, sample outputs of 
the algorithm will have to speak for themselves. One of them, 
the bombing, has already been presented in Section 4. Figure 
3 shows the final output of another story cluster, this time on 
the topic of court sentencings. The template graphs in the 
figure were extracted from about 10 story graphs each. 

At least 35 people were killed and 
over 150 injured on Sunday when a

suicide bomber struck a 
gathering of the minority Shia

community in Chakwal area …

Figure 2.   A story graph. A sample story graph as
constructed by the algorithm. Only the highest scoring
nodes are displayed; mid-scoring nodes are partially faded
out. In corner, a text snippet from an article on this story is
overlaid; subject-predicate-object triplets are marked as
output by the tagger. The annotations are linguistically not
completely correct but serve our purpose well.  



 

6 DISCUSSION AND FUTURE WORK 
The results, although sketchy, show promise for using the 
template graphs in ontology extension. Had we used some 
ontology other than WordNet in the last step, we would 
essentially get information encoded in the terms of that 
ontology. While mapping English words to ontology 
concepts is in general hard, this problem is mitigated by the 
high redundancy of information found in a collection of news 
like ours. Each hypernode of our template graph is 
represented by a whole set of words and therefore easier to 
interpret in an automated fashion. 

 In a similar vein, information extraction based on such 
templates should be feasible as well, since each hypernode is 
again equipped with a context and a list of words which we 
can think of as positive examples.  

In the future, we hope to be able to verify these claims; in 
the short run, however, the focus will be on increasing the 
performance of each pipeline phase.  

In the data annotation phase, the use of a faster triplet 
tagger is a mandatory improvement as the rate of tagging is 
currently about 2 articles per minute. For named entities we 
plan to replace ANNIE with a disambiguator proposed in [4] 
which uses public knowledge sources including DBpedia and 
GeoNames to tag entities with higher accuracy and using 
globally consistent IDs. 

The clustering of articles into stories will probably be left 
in Google's domain as its performance is not problematic, 
although we do have an equivalent in-house solution in store. 
When scoring triplets at the story level, we might try to 
exploit the local topology of each article's semantic graph as 
demonstrated in [5], although statistics alone currently seem 
to suffice. All in all, the added structure carried by the graphs 
(as opposed to plain words) will have to be better exploited 
on all fronts. At this point our assumption that nodes and 
links of semantic graphs correspond directly to subject-verb-
object triplets in English language may prove to be too 
strong. Indeed, this is not at all always true: for example, for 
the sentence "neighbors have reported to have seen the car 
crash into building", parsers would return "neighbors 
reported car" or similar. The real information, "car crash 
building", remains hidden deep within the parse tree. With 
intransitive verbs, even improving the parser would not help: 
e.g., for "Michael Jackson died quickly", sensible graph 
representations like "MJ —become—  dead", "death —
happen— quickly" have no foundation in triplets as there are 

no triplets at all in the sentence. Both problems are mitigated 
extensively by redundancy: it is highly probable that some 
article will use a phrase that the pipeline can recognize, like 
"Michael Jackson suffered a stroke".  If this proves not to be 
enough, there is interesting work by [9] which aims to 
syntactically break problematic sentences like the ones above 
into more parser-friendly but equivalent sentences. 

We are also considering altogether dropping the phase of 
story clustering and trying to mine frequent subgraphs in all 
the stories. Computational complexity is an obvious issue 
here, especially because the subgraph support can be fuzzy.  

Finally, the most obvious shortcoming of our work so far 
is the absence of efficiency measures. As the speed and 
accuracy of the pipeline increase, it will also become feasible 
to execute larger and more structured tests to properly 
evaluate its performance. 
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Figure 3.   The end result. Two event templates as output by
the algorithm. The left graph attempts to provide a template
for stories on bombings, the left one for stories on court
sentencings.  


