

TWO PASS K-MEANS ALGORITHM FOR
FINDING SIFT CLUSTERS IN AN IMAGE

Nenad Tomašev, Dunja Mladenić

Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
e-mail: nenad.tomasev@ijs.si, dunja.mladenic@ijs.si

ABSTRACT

This paper explores the ways to represent images as
bags of SIFT feature clusters. SIFT features themselves
are widely used in image analysis because of their
properties of scale and rotation invariance. The usual
way to group them is to segment the image into regions
and then assign features to the corresponding image
parts. When images themselves are not available for
privacy reasons, this is not possible. We created a
hybrid clustering algorithm which offers more
flexibility than simple spatial k-means clustering. The
algorithm parameters were optimized by a stochastic
procedure. The impact of different elements of local
representation on final clustering quality is discussed.

1 INTRODUCTION

Due to the constant increase in the amount of multimedia
data, automatic image processing is becoming more and
more important. For any sort of machine learning
algorithms to be employed, images first need to be
represented in a way which allows for easy manipulation
and calculation. There exists a variety of local or global
image features, capturing aspects of objects present in an
image. One of the most frequently used local features are
SIFT features. They are quite robust and invariant to
translation, scaling and rotation [1].

Each SIFT feature has the following structure: (x,y)
location in an image where it was found, scale at which it
was found, orientation of the direction of the change it
describes, as well as the most important part – the feature
descriptor. The descriptor is a set of orientation histograms
in the vicinity of the keypoint. Usually, a 16x16 pixel
neighborhood is sampled, observing 16 histograms of
dimensions 4x4, each having 8 bins. This results in the
descriptor length of 128 values, so the descriptor is in fact
quite high-dimensional. The keypoints themselves are
usually found as scale-space extrema of difference of
Gaussian image convolutions [2].

SIFT features can be used in various ways. For representing
an entire image, it is customary to first quantize the most
typical feature vectors and assign each feature on an image
to its closest typical vector, thereby representing an image
as a histogram of frequencies of these so-called codebook
vectors. They are obtained as centroids of clusters of
features from a stratified sample on a collection of images.

On the other hand, we might want to observe an image as a
set of objects in a scene. Each object would then be
represented as a group of spatially close SIFT features
corresponding to the region in the image where the object is
located [1]. In order to achieve this, features have to be
grouped in a certain way. The ways of performing the
grouping vary according to the specific image task.
Sometimes it is beneficial to group features according to
the descriptors and to observe an object as a small group of
appearance clusters of features describing different textures
[3]. More usual way to do is to find regions of interest by
first segmenting the image at some level of detail, and then
just assigning features to image segments based on their
location. A simple K-means clustering based feature
location in an image is also an option, though certainly not
the most flexible choice.

Sometimes, there are certain privacy issues involved and it
is not possible to obtain the images themselves, just some
sort of feature representation. This means that there are
times when it is not possible to rely on image segmentation
for SIFT feature grouping. It is also noteworthy to mention
that image segmentation does not necessarily lead to the
most convenient image decomposition for purposes of
SIFT-based object representation. Even if it does, one must
still be careful with threshold parameters for segment
merging/splitting, in order to get the desired level of detail.

The goal of this project was to make an algorithm for SIFT
feature clustering in a single image, which works just with
locally extracted information and which would be flexible
enough to meet various preferential requirements for
determining feature groups.

2 VIEWS ON SIFT FEATURE CLUSTERING

As previously mentioned, sometimes it is beneficial to
group SIFT features before proceeding with the analysis.
These feature clusters can then be represented either by
their centroids in a simplistic manner, or mapped to
corresponding codebook vectors to obtain histograms.

It would be ideal if the so-constructed clusters would match
either whole objects or object parts perfectly. Naturally,
this is not possible in general case. However, it should be
our aim to try and fit those clusters as close as possible to
the ideal case.

The first approach that comes to mind is to simply use one
of the existing clustering algorithms, for instance k-means,
and just define the distance measure between features
conveniently. This metric should be defined so as to
include information about the difference in keypoint
location, feature descriptor and scale. We could also
include information about colors in the vicinity of the
points by calculating color histograms in some small pixel
neighborhoods, if the images are provided. We could form
a linear combination of these terms by weighting them
according to their relative importance for the image mining
task at hand. However, things are not all that simple.

Consider the image shown in Figure 1. There are two cars
present in the image, which are exactly the same. If we
think of how the SIFT clusters might look like in the end, it
is clear that by using the above described approach, there
will be big differences between the small and the big car.
This is because the spatial distance is weighted the same in
both cases and parts of the bigger car are further away from
each other than in case of the smaller car. Hence, we will
obtain different clusters for those two objects just because
they are of different size.

In this particular example, normalizing the distance
between each pair of keypoints by some function of the
scales at which the respective SIFT features were detected
could definitely improve the result. This is also not ideal,
because some objects contain features of different scales. If
the distribution of scales in the object’s features has a big
variance, any sort of direct distance normalization based on
scale would induce a clustering on an object where features
would most likely be broken up into two or more
potentially spatially inconsistent groups.

Figure 1: An image of a car, containing a small copy of
itself in the upper left corner.

One might consider the above example slightly artificial
because both cars were the same, but the same argument
goes for having similar objects of the same type in several

places in an image, not all of them having the same size. In
Section 4 we will propose one solution for this problem.

3 RELATION BETWEEN IMAGE SEGMENTS AND
SIFT FEATURE CLUSTERS

Image segmentation can be a useful way to obtain SIFT
feature clusters after decomposing the original image into
subsegments. However, this can also sometimes lead to
redundant feature clusters and more complex
representations of the original image. Observe the images
in Figure 2. Even though it is possible to interpret every
single leaf as an individual object for further analysis, it is
hardly necessary. It would be quite acceptable having a few
of the leaves clustered together, the more the better. They
bear nearly identical SIFT features and even have similar
colors. However, the shown segmentation has produced 64
different segments in the image. This is much more than
what would be required for further processing.

Figure 2: An image of an autumn tree branches and leaves
and the corresponding segmentation obtained by SRM
segmentation algorithm.

Since image segments usually represent either objects or
parts of objects, it would be reasonable to assume that the
features contained within a single segment should be
relatively homogenous with respect to their cluster labels.
This doesn’t mean that all the features within a single
segment must come from a single SIFT feature cluster. In
the case of the leaves depicted above, it would also be
acceptable to have some slight overlap of clusters within
segments. Also, image segments tend to be of quite
irregular shapes, sometimes extending along the edge of the
entire image. Since distance between keypoints plays a role
in the clustering, it is difficult to produce such irregular
clusters, especially if the density of keypoints within is low,
meaning that the region is not highly textured. Hence, it is
also acceptable to have several feature clusters within the
segment and vice versa. What is best depends on the image

in question and there is no universal answer to cover all the
possible cases.

4 PROPOSED ALGORITHM

There are as many ways to approach the problem as there
are clustering algorithms in general. In this particular case,
we would like to propose a simple extension to the k-means
algorithm, which is usually used to quickly find spatial
feature clusters when more time-consuming methods are
not applicable. This is the procedure we will be considering
in the rest of the paper.
 INITIALIZATION:

o Perform K-means based on x,y coordinates of the
features in order to place initial centroids at spatially
reasonable locations

o Calculate local color histograms for neighborhoods
of all keypoints

 LOOP:
o Calculate local color histograms for all centroids
o Calculate separately distances in coordinates, scale,

color histograms and feature descriptors between all
keypoints and all centroids

o For each keypoint:
 Rank centroids separately according to distance

from the keypoint in either of the metrics (in an
ascending way, the closest centroid having
rank of 1). Mark these ranks rxy(ci), rc(ci), rs(ci),
rd(ci) for centroid ci, respectively
 Calculate distance from the keypoint to the

centroid as a linear combination of these ranks:
d(Xi, ci) = rxy(ci) + αrc(ci) + βrs(ci) + γrd(ci)
 Assign keypoint to the closest centroid

o If there were no reassignments or the error change is
below threshold, END

o Calculate new centroids and go back to start of the
loop

The use of ranks instead of explicit distances addresses the
issue raised in Section 2 of dealing with similar objects on
various scales. This way, there is no need to try explicitly
combining individual distances which might behave
differently in different situations. Certainly, some of the
information is lost this way, but hopefully it’s compensated
enough by overcoming some shortcomings of the direct
approach. It should also be noted that instead of combining
continuous variables, here there is only a discrete set of
rank combinations for a centroid, which could also be
ordered in a more general way.

Since the initial spatial K-means is done in the initialization
step, this second K-means pass with the modified rank-
based metric is there as sort of cluster refinement.

Parameters allow for setting the algorithm to favor either of
the aspects of a keypoint when deciding on cluster
assignment. It is clear that the choice of parameters should

reflect the context in which the clustering is performed. If it
is known that the images in the dataset are not very
colorful, then local color histograms definitely won’t
contribute, they could even worsen the end configuration.
The three parameters α, β, γ represent relative importance
of color, scale and feature descriptor compared to
significance of keypoint (x,y) coordinates when
determining feature clusters. Hence, the influence of
coordinate distance is assumed to be non-zero, naturally.

5 EXPERIMENTAL SETUP

 When dealing with a specific task, it is necessary to set the
rank weights well. We mentioned image segmentation as a
way of grouping SIFT features, which has its own
advantages and disadvantages. Here we check which setup
of the rank weights seems to be most consistent with
respect to image segmentation. We approach this as a
stochastic optimization problem.

A small set of 50 images was handpicked for evaluation
from the IMAGENET challenge dataset [4]. The images
were chosen from several different categories, namely
plants, animals, landscapes, people, cars, gears, etc. We
chose those images which had neither too simple a
segmentation, nor too complex one. The aim wasn’t to try
solving the generalized problem, but just to gain some
insight into which setup could be expected to produce
clusters which follow the structure of image segments.

For segmentation, statistical region merging method was
used [6]. SIFT features were extracted by SiftWin
application developed by David Lowe [7].

Optimization was performed by simulated annealing [5]. It
is a method which gives a trade-off between exploration
and exploitation in the search space, controlled by the
temperature parameter. The non-negative probability of
choosing the worse solution during the search helps
escaping local optima and is given by the following
formula:

(() ())/
1(| () ()) i iErr s Err o Td

i i i ip s o Err o Err s e 
   

In the above equation, the current solutions are denoted by
s, the configurations being currently checked by o, T is the
temperature parameter and d the average change caused by
mutations to the solutions, which is calculated in the first
few steps.

For this particular case, it was assumed that the greatest
influence should be exhibited by the coordinate distance, in
order to get spatially consistent clusters. Therefore, the
bounds were set on all three parameters α, β, γ to fall into
the interval [0,1].

Fitness of configurations was estimated as the average
within-segment entropy of cluster labels. Minimizing this
entropy would lead to more homogenous solutions.

Two different optimization runs were performed, one by
setting a fixed number of clusters (K=20) on all images, the
other by stating that for every image the number of clusters
is equal to number of segments on that image. 300
iterations were performed in each of these runs.

Images in the dataset had a varying number of segments,
ranging from 13 to 76, with an average of a little over 34
segments per image. The number of SIFT features on an
image ranged from 487 to 3062 and the average was around
1410 features per single image.

6 RESULTS

It turns out there was little difference between the two
optimization runs in terms of the final suggested
configurations.

 Descriptor

rank weight
Color
rank weight

Scale
rank
weight

nc = nsegments 0 0.06 0.62
nc = 20 0 0.04 0.63

Table 1: Weighting schemes that were most aligned with
SRM segmentation

It was clear beforehand that descriptor similarity should not
be given much weight if the goal was to achieve
segmentation-like clustering of the keypoints, because
similar features can be located anywhere in an image, so a
high weight of feature similarity would certainly have
disrupted the desired grouping. However, it still came as a
surprise to see that in this particular case of statistical
region merging segmentation, any use of the descriptor
information whatsoever led to clustering configurations
which were less aligned with the observed segmentations.

It is also intuitive that color should be given some
significance, but not too much since there can be many
regions in an image having same or similar colors. High
scale weight suggests that features of similar scales tend to
be grouped together in same segments often enough for it
to become important.

Even with the described optimal parameter setting, the
produced clustering of SIFT features differs greatly from
given segmentation. Average within-segment entropy is
roughly 50% of the maximum possible entropy for the used
number of clusters. This can be explained by the fact that
some image segments do not contain SIFT keypoints at all,
so the entropy naturally gets a bit higher when more
clusters are used than is actually needed. However, it is not

entirely clear how one should go about guessing the proper
number of clusters beforehand in the k-means setting. It is
of course possible to run clustering for a range of values of
k and pick the best one. Performing all these runs would
have taken much more time, so we limited the experiments
to this less-than-ideal case.

The parameters obtained via the described optimization
process do not extend to the general case. The choice of
parameters is context-dependent, and sometimes it is even
advisable to give greatest weight to feature descriptor.

Both the weighting scheme and the final entropy estimates
relate only to comparison with SRM segmentation.

7 CONCLUSION

We explored the possibilities of using a two-pass k-means
approach when clustering SIFT features on an image, first
performing spatial clustering for initialization and then
refining the clustering in the second pass by using as
distance a linear combination of centroid ranks obtained
with respect to some selected individual distance measures.
We performed stochastic optimization on parameters of the
algorithm to see which configuration leads to best
alignment with image segmentation. Most important was
naturally the coordinate distance, followed by scale and
color, while the feature descriptors proved to be of no
importance in this particular case. Achieving segmentation-
like clustering of keypoints is only one possible approach,
so different weighting schemes could be chosen for other
tasks.

8 ACKNOWLEDGEMENTS

This work was supported by the Slovenian Research
Agency and the IST Programme of the EC PASCAL2 (IST-
NoE-216886).

References

[1] Z. Zhang and R. Zhang Multimedia Data Mining.
Chapman & Hall, 2009.

[2] D. Lowe. Object recognition from local scale-invariant
features, Proceedings of the International Conference
on Computer Vision. pp. 1150-1157. 1999.

[3] K. Mikolajczyk, B. Leibe, B. Schiele. Local Features
for Object Class Recognition. In Proc. ICCV'05, Tenth
IEEE International Conference on Computer Vision.
Beijing. China. 2005.

[4] IMAGENET. http://www.image-net.org/
[5] Franco Busetti. Simulated Annealing overview.

www.geocities.com/francoburseti/saweb.pdf
[6] R. Nock, F. Nielsen. Statistical Region Merging. IEEE

Transactions on Pattern Analysis and Machine
Intelligence pp. 1452-1458. 2004.

[7] D. Lowe. SIFT Keypoint Detector.
http://www.cs.ubc.ca/~lowe/keypoints/

