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ABSTRACT 

 

This paper explores the ways to represent images as 
bags of SIFT feature clusters. SIFT features themselves 
are widely used in image analysis because of their 
properties of scale and rotation invariance. The usual 
way to group them is to segment the image into regions 
and then assign features to the corresponding image 
parts. When images themselves are not available for 
privacy reasons, this is not possible. We created a 
hybrid clustering algorithm which offers more 
flexibility than simple spatial k-means clustering. The 
algorithm parameters were optimized by a stochastic 
procedure. The impact  of different elements of local 
representation on final clustering quality is discussed. 

 
1  INTRODUCTION 
 
Due to the constant increase in the amount of multimedia 
data, automatic image processing is becoming more and 
more important. For any sort of machine learning 
algorithms to be employed, images first need to be 
represented in a way which allows for easy manipulation 
and calculation. There exists a variety of  local or global 
image features, capturing aspects of objects present in an 
image. One of the most frequently used local features are 
SIFT features. They are quite robust and invariant to 
translation, scaling and rotation [1]. 
 
Each SIFT feature has the following structure: (x,y) 
location in an image where it was found, scale at which it 
was found, orientation of the direction of the change it 
describes, as well as the most important part – the feature 
descriptor. The descriptor is a set of orientation histograms 
in the vicinity of the keypoint. Usually, a 16x16 pixel 
neighborhood is sampled, observing 16 histograms of 
dimensions 4x4,  each having 8 bins. This results in the 
descriptor length of 128 values, so the descriptor is in fact 
quite high-dimensional. The keypoints themselves are 
usually found as scale-space extrema of difference of 
Gaussian image convolutions [2]. 
 
SIFT features can be used in various ways. For representing 
an entire image, it is customary to first quantize the most 
typical feature vectors and assign each feature on an image 
to its closest typical vector, thereby representing an image 
as a histogram of frequencies of these so-called codebook 
vectors. They are obtained as centroids of clusters of 
features from a stratified sample on a collection of images. 

On the other hand, we might want to observe an image as a 
set of objects in a scene. Each object would then be 
represented as a group of spatially close SIFT features 
corresponding to the region in the image where the object is 
located [1]. In order to achieve this, features have to be 
grouped in a certain way. The ways of performing the 
grouping vary according to the specific image task. 
Sometimes it is beneficial to group features according to 
the descriptors and to observe an object as a small group of 
appearance clusters of features describing different textures 
[3]. More usual way to do is to find regions of interest by 
first segmenting the image at some level of detail, and then 
just assigning features to image segments based on their 
location. A simple K-means clustering based feature 
location in an image is also an option, though certainly not 
the most flexible choice. 
 
Sometimes, there are certain privacy issues involved and it 
is not possible to obtain the images themselves, just some 
sort of feature representation. This means that there are 
times when it is not possible to rely on image segmentation 
for SIFT feature grouping. It is also noteworthy to mention 
that image segmentation does not necessarily lead to the 
most convenient image decomposition for purposes of 
SIFT-based object representation. Even if it does, one must 
still be careful with threshold parameters for segment 
merging/splitting, in order to get the desired level of detail.  
 
The goal of this project was to make an algorithm for SIFT 
feature clustering in a single image, which works just with 
locally extracted information and which would be flexible 
enough to meet various preferential requirements for 
determining feature groups. 
 
2  VIEWS ON SIFT FEATURE CLUSTERING 
 
As previously mentioned, sometimes it is beneficial to 
group SIFT features before proceeding with the analysis. 
These feature clusters can then be represented either by 
their centroids in a simplistic manner, or mapped to 
corresponding codebook vectors to obtain histograms. 
 
It would be ideal if the so-constructed clusters would match 
either whole objects or object parts perfectly. Naturally, 
this is not possible in general case. However, it should be 
our aim to try and fit those clusters as close as possible to 
the ideal case. 



 

The first approach that comes to mind is to simply use one 
of the existing clustering algorithms, for instance k-means, 
and just define the distance measure between features 
conveniently. This metric should be defined so as to 
include information about the difference in keypoint 
location, feature descriptor and scale. We could also 
include information about colors in the vicinity of the 
points by calculating color histograms in some small pixel 
neighborhoods, if the images are provided. We could form 
a linear combination of these terms by weighting them  
according to their relative importance for the image mining 
task at hand. However, things are not all that simple. 
 
Consider the image shown in Figure 1. There are two cars 
present in the image, which are exactly the same. If we 
think of how the SIFT clusters might look like in the end, it 
is clear that by using the above described approach, there 
will be big differences between the small and the big car. 
This is because the spatial distance is weighted the same in 
both cases and parts of the bigger car are further away from 
each other than in case of the smaller car. Hence, we will 
obtain different clusters for those two objects just because 
they are of different size. 
 
In this particular example, normalizing the distance 
between each pair of keypoints by some function of the 
scales at which the respective SIFT features were detected 
could definitely improve the result. This is also not ideal, 
because some objects contain features of different scales. If 
the distribution of scales in the object’s features has a big 
variance, any sort of direct distance normalization based on 
scale would induce a clustering on an object where features 
would most likely be broken up into two or more 
potentially spatially inconsistent groups.  
 

 
 
Figure 1: An image of a car, containing a small copy of 
itself in the upper left corner. 
 
One might consider the above example slightly artificial 
because both cars were the same, but the same argument 
goes for having similar objects of the same type in several 

places in an image, not all of them having the same size. In 
Section 4 we will propose one solution for this problem.  
 
3  RELATION BETWEEN IMAGE SEGMENTS AND 
SIFT FEATURE CLUSTERS 
 
Image segmentation can be a useful way to obtain SIFT 
feature clusters after decomposing the original image into 
subsegments. However, this can also sometimes lead to 
redundant feature clusters and more complex 
representations of the original image. Observe the images 
in Figure 2. Even though it is possible to interpret every 
single leaf as an individual object for further analysis, it is 
hardly necessary. It would be quite acceptable having a few 
of the leaves clustered together, the more the better. They 
bear nearly identical SIFT features and even have similar 
colors. However, the shown segmentation has produced 64 
different segments in the image. This is much more than 
what would be required for further processing. 
 

 
 
Figure 2: An image of an autumn tree branches and leaves 
and the corresponding segmentation obtained by SRM 
segmentation algorithm. 
 
Since image segments usually represent either objects or 
parts of objects, it would be reasonable to assume that the 
features contained within a single segment should be 
relatively homogenous with respect to their cluster labels. 
This doesn’t mean that all the features within a single 
segment must come from a single SIFT feature cluster. In 
the case of the leaves depicted above, it would also be 
acceptable to have some slight overlap of clusters within 
segments. Also, image segments tend to be of quite 
irregular shapes, sometimes extending along the edge of the 
entire image. Since distance between keypoints plays a role 
in the clustering, it is difficult to produce such irregular 
clusters, especially if the density of keypoints within is low, 
meaning that the region is not highly textured. Hence, it is 
also acceptable to have several feature clusters within the 
segment and vice versa. What is best depends on the image 



 

in question and there is no universal answer to cover all the 
possible cases. 
 
4  PROPOSED ALGORITHM 
 
There are as many ways to approach the problem as there 
are clustering algorithms in general. In this particular case, 
we would like to propose a simple extension to the k-means 
algorithm, which is usually used to quickly find spatial 
feature clusters when more time-consuming methods are 
not applicable. This is the procedure we will be considering 
in the rest of the paper. 
 INITIALIZATION:  

o Perform K-means based on x,y coordinates of the 
features in order to place initial centroids at spatially 
reasonable locations 

o Calculate local color histograms for neighborhoods 
of all keypoints 

 LOOP:  
o Calculate local color histograms for all centroids 
o Calculate separately distances in coordinates, scale, 

color histograms and feature descriptors between all 
keypoints and all centroids 

o For each keypoint: 
 Rank centroids separately according to distance 

from the keypoint in either of the metrics (in an 
ascending way, the closest centroid having 
rank of 1). Mark these ranks rxy(ci), rc(ci), rs(ci), 
rd(ci) for centroid ci, respectively 
 Calculate distance from the keypoint to the 

centroid as a linear combination of these ranks: 
d(Xi, ci) = rxy(ci) + αrc(ci) + βrs(ci) + γrd(ci) 
 Assign keypoint to the closest centroid 

o If there were no reassignments or the error change is 
below threshold, END 

o Calculate new centroids and go back to start of the 
loop 

 
The use of ranks instead of explicit distances addresses the 
issue raised in Section 2 of dealing with similar objects on 
various scales. This way, there is no need to try explicitly 
combining individual distances which might behave 
differently in different situations. Certainly, some of the 
information is lost this way, but hopefully it’s compensated 
enough by overcoming some shortcomings of the direct 
approach. It should also be noted that instead of combining 
continuous variables, here there is only a discrete set of 
rank combinations for a centroid, which could also be 
ordered in a more general way. 
 
Since the initial spatial K-means is done in the initialization 
step, this second K-means pass with the modified rank-
based metric is there as sort of cluster refinement.  
 
Parameters allow for setting the algorithm to favor either of 
the aspects of a keypoint when deciding on cluster 
assignment.  It is clear that the choice of parameters should 

reflect the context in which the clustering is performed. If it 
is known that the images in the dataset are not very 
colorful, then local color histograms definitely won’t 
contribute, they could even worsen the end configuration. 
The three parameters α, β, γ represent relative importance 
of color, scale and feature descriptor compared to 
significance of keypoint (x,y) coordinates when 
determining feature clusters. Hence, the influence of 
coordinate distance is assumed to be non-zero, naturally. 
 
5  EXPERIMENTAL SETUP 
 
 When dealing with a specific task, it is necessary to set the 
rank weights well. We mentioned image segmentation as a 
way of grouping SIFT features, which has its own 
advantages and disadvantages. Here we check which setup 
of the rank weights seems to be most consistent with 
respect to image segmentation. We approach this as a 
stochastic optimization problem. 
 
A small set of 50 images was handpicked for evaluation 
from the IMAGENET challenge dataset [4]. The images 
were chosen from several different categories, namely 
plants, animals, landscapes, people, cars, gears, etc. We 
chose those images which had neither too simple a 
segmentation, nor too complex one. The aim wasn’t to try 
solving the generalized problem, but just to gain some 
insight into which setup could be expected to produce 
clusters which follow the structure of image segments. 
 
For segmentation, statistical region merging method was 
used [6]. SIFT features were extracted by SiftWin 
application developed by David Lowe [7]. 
 
Optimization was performed by simulated annealing [5]. It 
is a method which gives a trade-off between exploration 
and exploitation in the search space, controlled by the 
temperature parameter. The non-negative probability of 
choosing the worse solution during the search helps 
escaping local optima and is given by the following 
formula: 
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In the above equation, the current solutions are denoted by 
s, the configurations being currently checked by o, T is the 
temperature parameter and d the average change caused by 
mutations to the solutions, which is calculated in the first 
few steps. 
 
For this particular case, it was assumed that the greatest 
influence should be exhibited by the coordinate distance, in 
order to get spatially consistent clusters. Therefore, the 
bounds were set on all three parameters α, β, γ to fall into 
the interval [0,1].  
 



 

Fitness of configurations was estimated as the average 
within-segment entropy of cluster labels. Minimizing this 
entropy would lead to more homogenous solutions. 
 
Two different optimization runs were performed, one by 
setting a fixed number of clusters (K=20) on all images, the 
other by stating that for every image the number of clusters 
is equal to number of segments on that image. 300 
iterations were performed in each of these runs. 
 
Images in the dataset had a varying number of segments, 
ranging from 13 to 76, with an average of a little over 34 
segments per image. The number of SIFT features on an 
image ranged from 487 to 3062 and the average was around 
1410 features per single image. 
 
6  RESULTS 
 
It turns out there was little difference between the two 
optimization runs in terms of the final suggested 
configurations. 
 
 Descriptor 

rank weight 
Color 
rank weight 

Scale 
rank 
weight 

nc = nsegments 0 0.06 0.62 
nc = 20 0 0.04 0.63 
 
Table 1: Weighting schemes that were most aligned with 
SRM segmentation 
 
It was clear beforehand that descriptor similarity should not 
be given much weight if the goal was to achieve 
segmentation-like clustering of the keypoints, because 
similar features can be located anywhere in an image, so a 
high weight of feature similarity would certainly have 
disrupted the desired grouping. However, it still came as a 
surprise to see that in this particular case of statistical 
region merging segmentation, any use of the descriptor 
information whatsoever led to clustering configurations 
which were less aligned with the observed segmentations. 
 
It is also intuitive that color should be given some 
significance, but not too much since there can be many 
regions in an image having same or similar colors. High 
scale weight suggests that features of similar scales tend to 
be grouped together in same segments often enough for it 
to become important. 
 
Even with the described optimal parameter setting, the 
produced clustering of SIFT features differs greatly from 
given segmentation. Average within-segment entropy is 
roughly 50% of the maximum possible entropy for the used 
number of clusters. This can be explained by the fact that 
some image segments do not contain SIFT keypoints at all, 
so the entropy naturally gets a bit higher when more 
clusters are used than is actually needed. However, it is not 

entirely clear how one should go about guessing the proper 
number of clusters beforehand in the k-means setting. It is 
of course possible to run clustering for a range of values of 
k and pick the best one. Performing all these runs would 
have taken much more time, so we limited the experiments 
to this less-than-ideal case. 
 
The parameters obtained via the described optimization 
process do not extend to the general case. The choice of 
parameters is context-dependent, and sometimes it is even 
advisable to give greatest weight to feature descriptor. 
 
Both the weighting scheme and the final entropy estimates 
relate only to comparison with SRM segmentation. 
 
7 CONCLUSION 
 
We explored the possibilities of using a two-pass k-means 
approach when clustering SIFT features on an image, first 
performing spatial clustering for initialization and then 
refining the clustering in the second pass by using as 
distance a linear combination of centroid ranks obtained 
with respect to some selected individual distance measures. 
We performed stochastic optimization on parameters of the 
algorithm to see which configuration leads to best 
alignment with image segmentation. Most important was 
naturally the coordinate distance, followed by scale and 
color, while the feature descriptors proved to be of no 
importance in this particular case. Achieving segmentation-
like clustering of keypoints is only one possible approach, 
so different weighting schemes could be chosen for other 
tasks. 
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