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Abstract

One of the ways of approaching a multiclass
classification problem is to transform it into sev-
eral two-class (binary) classification problems.
An ensemble of binary classifiers is trained for
these tasks and their predictions are combined
using a voting method into predictions for the
original multiclass problem. Each of the new bi-
nary problems uses some of the original classes
as positive training data, some classes as nega-
tive training data and the remaining classes (if
any) are not used at all. The relationship be-
tween classes (of the original problem) and bi-
nary classifiers can be concisely represented by
a matrix called the coding matrix. In this pa-
per we explore some of the statistical properties
of the space of coding matrix based classifiers
in the context of a small hierarchical multiclass
learning problem.

1 Introduction

Many machine learning methods were initially designed
to handle binary (two-class) classification problems. If
we want to use such a method to deal with a multi-class
problem, one way to do this is to convert the multi-class
problem into several binary problems, train binary clas-
sifiers for these new problems and then combine their
predictions via a voting scheme to obtain predictions for
the original multi-class problem.

Each of the new binary classification problems is de-
fined by labelling some of the classes of the original
multi-class problem as positive, some as negative, and
the rest as unused. The union of instances of the posi-
tive (resp. negative) classes from the original multi-class
problem then forms the positive (resp. negative) class of
the new binary problem.

This mapping between classes of the original prob-
lem and the new binary problems can be concisely rep-
resented by a coding matrix. Let k be the number of
classes in the original problem and let m be the number
of new binary problems. Then the coding matrix M is
a matrix from {−1, 0, 1}k×m, where the element Mcj

tells us how class c of the original problem is used in

the j’th new binary problem: Mcj = 1 means that in-
stances from this class are used as positive examples,
Mcj = −1 that they are used as negative examples and
Mcj = 0 means that they aren’t used at all when training
the j’th binary classifier.

Thus, the coding matrix has one row for each class
of the original multi-class problem. The c’th row of the
matrix tells us how class c has been used while train-
ing the individual binary classifiers. Consider an in-
stance x belonging to class c; let yj(x) ∈ {−1,+1}
be the prediction of the j’th classifier; then, for those
j where Mcj 6= 0, we would expect yj(x) to be equal
to Mcj (unless the classifier yj is making an error on
this particular x), whereas for those j where Mcj = 0
we cannot make any advance judgments about what
the predictions of yj will be, because the j’th clas-
sifier hasn’t seen members of class c during training.
Thus, if x belongs to c, we would expect the sum∑

j yj(x)Mcj to be high, and it’s reasonable to take
z(x) := arg maxc

∑
j yj(x)Mcj as the final prediction

of the ensemble as a whole with regard to the original
multi-class problem.

Coding matrices can be seen as a generalization of
various traditional approaches to transforming multi-
class problems into binary ones, such as the one-vs-
rest approach (corresponding to k = m and a matrix in
which Mcj = 1 if c = j, and Mcj = −1 otherwise) and
the one-vs-one approach (corresponding to k =

(
m
2

)
and

a matrix in which each column has exactly two nonzero
entries).

The space of coding matrices is exponentially large
in terms of k and m. Various approaches to construct-
ing coding matrices have been considered in the litera-
ture, e.g. based on error correcting output codes [1] or
by a greedy search through the space [2]. However, for
small values of k and m, the space of coding matrices is
tractable and we can afford to consider all possible cod-
ing matrices. In this paper we present some statistical
properties of the space of coding matrix classifiers and
their performance for a small dataset consisting of seven
classes organized into a three-level hierarchy.
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Figure 1. (a) Median and maximum Jaccard score over all m-column matrices; (b) average and std. dev. of the Jaccard score;
(c) best-fit beta distribution parameters, αm and βm, as functions of m (note the logarithmic scale on the y-axis).
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Figure 2. Distribution of Jaccard scores of m-column matrices, for various m.

2 Coding matrix space

In principle, since the matrix has k×m entries and each
entry has three possible values, we could say that there
exist 3km possible coding matrices for the decomposi-
tion of a k-class problem into m binary problems. But
this is in fact only a loose upper bound; it is not useful
to distinguish matrices that differ only in the order of
columns, nor to permit columns that do not have at least
one +1 entry and at least one −1 entry. This leaves
us with u := 3k − 2 · 2k + 1 possible states of a col-
umn. If we furthermore require that all columns in the
matrix be distinct (the effects of allowing multiple iden-
tical columns would be better achieved by introducing
weighted voting when combining the predictions of bi-
nary classifiers), the number of distinct coding matrices
(up to the reordering of columns) is

(
u
m

)
.

Sometimes the classes are organized hierarchi-
cally (a typical example are topical categories such as
dmoz.org or Yahoo, but this also occurs in traditional
text categorization datasets such as Reuters [4]); if a
class p is a parent of class c in the hierarchy, this means
that every instance of c is also an instance of p, and this
in turn means that if Mpj 6= 0, then Mcj should be equal
to Mpj , otherwise the j’th classifier would see class c as
simultaneously positive and negative.

With this additional constraint, we can derive the
following bound on the number of distinct coding matri-
ces. Suppose that our class hierarchy consist of h levels,
that all leaves are at level h and that all internal nodes
have exactly b subtrees. Each column of the matrix now
corresponds to a labelling of this hierarchy with the la-
bels −1, +1 and 0, subject to the constraints described
in the preceding paragraph. Let uh be the number of dis-

tinct labellings for a h-level hierarchy; it can be shown
that uh = 2 + (uh−1)b and u1 = 3. On the other hand
let vh be the number of distinct labellings that use only
the labels +1 and 0 but not −1; it can be shown that
there are vh such labellings, where vh = 1 + (vh−1)b

and v1 = 2. Thus the total number of different valid
nontrivial labellings is u := uh−2vh +1, and the num-
ber of distinct coding matrices is again

(
u
m

)
for this new

value of u.

3 Experiments

3.1 Experimental setup
We use a small hierarchy of classes extracted from
the large topic hierarchy of the Open Directory Project
(ODP; see dmoz.org). There is a root topic with 2
subtopics, each of which has another 2 subtopics; thus
we have 7 classes arranged in a 3-level hierarchy. Sec-
tion 2 tells us (taking h = 3, b = 2) that there are 36
possible states of each column of the coding matrix; thus
there are

(
36
m

)
distinct matrices of m columns (up to the

reordering of columns). Each topic except the root had
100 training documents and 100 test documens.

m 1 2 3 4 5 6`36
m

´
36 630 7 140 58 905 376 992 1 947 792

This means that for small values of m the number
of all m-column matrices is small enough that we can
afford to investigate them all; for higher values of m
we can at least examine a considerable subset of all
m-column matrices by random sampling. We use lin-
ear SVM [3] to train binary classification models corre-
sponding to individual columns of the matrix.
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Figure 3. Scatterplots showing the relation between average row/column separation of a matrix and its Jaccard score, for
m = 3, 4, 7.

To evaluate the classification performance of a cod-
ing matrix, we use an evaluation measure based on the
Jaccard coefficient. For any class c, let A(c) be the set
consisting of c and all its ancestors. If an instance be-
longing to class c is predicted as belonging into the class
c′, we define the Jaccard score of this prediction to be
|A(c) ∩ A(c′)|/|A(c) ∪ A(c′)|. We define the Jaccard
score of the matrix as the average Jaccard score over all
instances from the test set. This evaluation measure lies
in the range [0, 1], with higher values indicating better
performance.

3.2 Distribution of matrix scores
A frequently used approach in the construction of cod-
ing matrices is to fill the matrix at random. If the matrix
is effectively a random variable, then so is its Jaccard
score, and it is interesting to investigate its probability
distribution. Figure 1 shows the median, maximum and
average Jaccard scores over all m-column matrices, as a
function of m. The median tells us that if we choose
a random coding matrix, we have a 50 % probability
of getting a Jaccard score greater than or equal to the
median; the maximum tells us the best performance we
could get if we could examine all possible matrices.

As we can see from Fig. 1, the maximum score
grows very slowly from m = 4 onwards, while the me-
dian keeps on growing. In other words, good matrices
with a small number of columns do exist, but there are
few of them and it’s therefore harder to find them.

We can also describe the distribution of Jaccard
scores with a histogram. We divided the range [0, 1] into
1000 equal subintervals and counted the percentage of
matrices whose score falls into each particular subinter-
val. The resulting histograms are shown on Fig. 2. As
we can see from the charts there, the maximum score
remains roughly the same from m = 4 to m = 8, but
the mode of the distribution gradually moves upwards
(i.e. as m increases, more and more matrices have higher

scores).
The shape of these distributions approximately

resembles that of the well-known beta distribution,
B(α, β), whose probability density function is f(x) =
xα−1(1−x)β−1/B(α, β). For each m, we can fit a beta
distribution over the histogram of Jaccard scores of m-
column matrices and obtain a new pair of parameters,
αm and βm. Fig. 4 shows some comparisons between
the original distribution of Jaccard scores and the best-fit
beta distribution; the mani difference is that the original
distribution leans more towards higher values and has a
higher mode than the best-fit beta distribution. Fig. 1(c)
shows the value of the best-fit parameters αm and βm as
a function of m. A very interesting relationship can be
seen to emerge, as both αm and βm are approximately
exponential functions of m.

3.3 Matrix score vs. other properties
An interesting question regarding coding matrices is
whether the classification performance of (an ensem-
ble based on) a matrix (e.g. as measured by its Jaccard
score) is correlated to some other more easily measur-
able and controllable properties of the matrix; knowl-
edge of such relationships could be used to construct
good coding matrices more easily, or to guide a search
through the space of coding matrices.

An example of such property is the row (or column)
separation, which is defined as the average Hamming
distance between all pairs of rows (or columns). Infor-
mal arguments can be constructed why it is desirable for
the matrix to have high row and column separation. Fig-
ure 3 explores the relationship between row/column sep-
aration and Jaccard score empirically, by plotting one
symbol for each matrix, with the Jaccard score being
used as its x-coordinate and the row or column separa-
tion as the y-coordinate. We can see that, in general,
better matrices (as measured by the Jaccard score) have
high row/column separation. But on the other hand,



 0

 0.005

 0.01

 0.015

 0.5  0.55  0.6  0.65  0.7  0.75  0.8  0.85

P
ro

ba
bi

lit
y 

de
ns

ity

Jaccard score

m = 3, actual distribution
Beta(84, 33)

 0

 0.01

 0.02

 0.6  0.65  0.7  0.75  0.8  0.85

P
ro

ba
bi

lit
y 

de
ns

ity

Jaccard score

m = 5, actual distribution
Beta(226, 73)

 0

 0.01

 0.02

 0.03

 0.04

 0.7  0.75  0.8  0.85

P
ro

ba
bi

lit
y 

de
ns

ity

Jaccard score

m = 8, actual distribution
Beta(738, 214)

Figure 4. The distribution of Jaccard scores of m-column matrices, with a best-fit beta distribution superimposed on the same
chart.
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Figure 5. Scatterplots showing the
relation between the average perfor-
mance (F1 on the left chart, a.u.ROC

on the right one) of binary classifiers
in the ensemble, and the Jaccard score
of the ensemble as a whole.

the very best matrices do not actually have the high-
est row/column separation, which shows that merely
maxmizing these two measures is not necessarily the
best way to construct coding matrices.

Another interesting question is whether the perfor-
mance of the ensemble is related to the performance
of the individual binary classifiers in it. We evaluated
each individual binary classifier from the point of view
of its binary classification problem, and computed mea-
sures such as F1 and the area under the ROC curve. We
can then compute the average F1 or a.u.ROC over all
the columns of a matrix, and see whether this average
is correlated to the Jaccard score of the matrix. Fig. 5
shows the results of this experiment; the correlation co-
efficients are 0.015 for the F1 measure and 0.25 for the
a.u.ROC, which shows that the performance of an en-
semble isn’t strongly correlated to the performance of
the individual binary classifiers in it.

4 Conclusions and future work
We have investigated the performance of coding-matrix
based ensembles on a small 7-class hierarchical text
classification problem using exhaustive experiments on
matrices of up to 8 columns. (1) Our experiments
show that matrices with good performance can be found
even with a small number of columns, but they are
much more rare than if we allow more columns. (2)
We have shown that the matrix performance scores
are distributed approximately following a beta distri-

bution, whose parameters are exponential in the num-
ber of columns. (3) We have shown that row/column
separation is correlated with matrix performance, but
maximizing separation does not lead to maximal per-
formance. (4) We have shown that matrix performance
is not correlated with the performance of the individual
binary classifiers in the corresponding ensemble.

In the future, the experiments could be extended to
a higher number of columns, where it would be neces-
sary to use random sampling as the number of possible
matrices is too high. Similarly it would be interesting
to extend this research to problems with a larger num-
ber of classes, and to involve other easily computable
matrix properties in addition to row/column separation.
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