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ABSTRACT 
 

Multi-label classification has received significant 
attention in the research community over the past few 
years: this has resulted in the development of a variety of 
multi-label classification methods. These methods either 
transform the multi-label dataset to several simpler datasets 
or adapt the learning algorithm so it can handle the multiple 
labels. In this paper, we consider the latter approach. 
Namely, we use predictive clustering trees to perform 
multi-label classification. Furthermore, we perform an 
experimental comparison of four distance measures used to 
select the splits in the nodes of the trees. The experimental 
evaluation was conducted on 6 benchmark datasets using 6 
different evaluation measures. The results show that, 
averaged overall, the Euclidean distance and the Hamming 
loss yield the best predictive performance. 

 
1 INTRODUCTION 
 
Traditionally, binary classification is concerned with 
deciding whether a given example has (or doesn’t have) a 
single given target property/class. Multi-class classification 
involves the labeling of a given example with a single 
label/class λi from a finite set of disjoint labels L = { λ1, 
λ2,…, λQ}, Q>2. In contrast, multi-label classification learns 
a mapping from an example in the input space (xX) to a 
set of labels (Y L) from the output space L. Note that, 
unlike in multi-class classification, in multi-label 
classification the labels are not mutually exclusive, i.e., a 
single example can be labeled with multiple labels. The 
labels that belong to the output Y are called relevant labels, 
while those from L\Y are called irrelevant for a given 
example. 

The machine learning task of multi-label 
classification data has lately received significant attention 
from the research community [1], which has resulted in 
development of many methods that tackle this task. The 
developed methods can be generally divided into two 
categories: problem transformation and algorithm 
adaptation. Problem transformation methods transform 
problem into one or more single-label classification 
problems. These problems are then solved using a 
commonly used method for single-label classification and, 
afterwards, the output is transformed back into a multi-label 
representation. Algorithm adaptation methods adapt the 

learning algorithms to handle the multi-label data directly. 
In this work, we focus on algorithm adaptation methods. 
Specifically, we use predictive clustering trees (PCTs) [2] 
as classifiers and extend the distance function used when 
learning the tree. PCTs are a generalization of decision 
trees that are capable of predicting structured outputs. 
Namely, PCTs can handle multiple continuous targets, 
multiple discrete targets, time-series [3] and hierarchies of 
classes [4]. In the context of multi-label classification, we 
employ the PCTs for multiple discrete targets where a 
weighted Euclidean distance is used to generate the tests in 
the internal nodes of the tree. Here, we extend the PCTs 
with three distance measures: Hamming distance, Jaccard 
distance and a matching distance. These distances will 
provide additional flexibility for the users when they apply 
PCTs to different domains. 

We compare the predictive performances of the 
PCTs obtained using different distance measures. The 
predictive performance was assessed on several benchmark 
datasets from multi-label classification. The predictive 
performance was measured with six evaluation measures: 
Hamming loss, accuracy, precision, recall, F1 score and 
subset accuracy.  

The remainder of this paper is organized as 
follows. In Section 2, we present the predictive clustering 
trees for multiple discrete targets. We define the distances 
that we use in Section 3. We give the experimental design 
and in Section 4 and the results in Section 5. Section 6 
concludes. 
 
2 PREDICTIVE CLUSTERING TREES 
 
The Predictive Clustering Trees (PCTs) framework sees a 
decision tree as a hierarchy of clusters: the top-node 
corresponds to one cluster containing all data, which is 
recursively partitioned into smaller clusters while moving 
down the tree. The PCT framework is implemented in the 
CLUS system, which is available for download at 
http://www.cs.kuleuven.be/~dtai/clus. 

PCTs can be induced with a standard top-down 
induction of decision trees (TDIDT) algorithm. The 
algorithm takes as input a set of examples and outputs a tree. 
The heuristic that is used for selecting the tests is the 
reduction in variance caused by partitioning the instances. 
By maximizing the variance reduction the cluster 
homogeneity is maximized and it improves the predictive 



 

performance. If no acceptable test can be found, that is, if 
the test does not significantly reduces the variance, then the 
algorithm creates a leaf and computes the prototype of the 
instances belonging to that leaf. The main difference 
between the algorithm for learning PCTs and a standard 
decision tree learner is that the former considers the variance 
function and the prototype function, that computes a label 
for each leaf, as parameters that can be instantiated for a 
given learning task. So far, the PCTs have been instantiated 
for the following tasks: multiple targets prediction [5], 
hierarchical-multi label classification [4] and prediction of 
time-series [3].  

In this paper, we focus on the first task. PCTs that 
are able to predict a tuple of discrete variables are called 
multi-target classification trees (MTCTs). An example of a 
MTCT is shown in Figure 1. This MTCT presents a habitat 
model for 14 bioindicator species [6]. The internal nodes of 
the tree contain tests on the descriptive variables (in this 
case, chemical parameters of the water samples) and the 
leaves store the predictions (in this case, which species are 
encountered and which not in a given water sample). 

The variance is calculated as the sum of the squared 
pairwise distances between the instances, i.e.,  
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The function used to calculate the prototype is then 
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is an instance from the dataset and is called medoid. 
Different distances can be used depending on the application 
domain. By default, PCTs use the Euclidean distance. 

Figure 1: An example of a predictive clustering tree for 
predicting multiple discrete targets. The leaves predict the 
presence or absence for each bioindicator species. 
 
3 DISTANCES FOR MULTI-LABEL LEARNING 
 
In a multi-label learning setup, the target variable is a set of 
labels. Therefore, we can readily use distances over sets. 
Another approach to the problem is to see the multi-label 
classification problem as a predicting tuples of discrete 
targets and use distances over tuples. PCTs (and decision 
trees) have been previously used in the later context [2]. 
The focus of this study is the former approach to multi-
label classification. In the remainder of this section, we 

present the distances over sets that can be used for 
extension of PCTs for multi-label classification. 
 
3.1 Euclidean distance 
The target in multi-label classification can be represented as 
a tuple of 0/1 values. The length of the target tuple is the 
number of all labels in the dataset. In this case, the 
Euclidean distance between two sets of labels Ci and Cj is 
defined as the Euclidean distance between their vector 
representations. 
 
3.2 Hamming distance 
The Hamming distance between two strings (i.e., bit-
vectors) of equal length is the number of positions at which 
the corresponding symbols are different. In other words, it 
measures the minimum number of substitutions required to 
change the first string into the second. In terms of sets, the 
Hamming distance between two sets Ci and Cj is defined as:  
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3.3 Jaccard distance 
The Jaccard distance measures the dissimilarity between 
two sets by dividing the difference of the sizes of the union 
and the intersection of the two sets with the size of the 
union. The Jaccard distance can be calculated as follows.  
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3.4 Matching distance (MD) 
 
Motivated by a recently introduced distance on sets of 
structured objects, this distance is based on the matching 
between object from the sets. The matched objects do not 
contribute to the distance, which has the value of the 
unmatched part of the larger dataset, as defined below 
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4 EXPERIMENTAL DESIGN 
 

We begin by describing the benchmark datasets used in this 
study. Next, we present the most typically used evaluation 
measures for multi-label classification. We then give the 
experimental setup for the data analysis. 
 

4.1 Datasets 
We use 6 multi-label classification benchmark problems. 

Parts of the selected problems were used in various studies 
and evaluations of methods for multi-label learning. In the 
process of selection of problems, we opted to include 
benchmark datasets with different scale and from various 
application domains. Table 1 presents the basic statistics of 
the datasets. The datasets vary in size: from 391 up to 5318 
training examples, from 202 up to 2635 testing examples, 
from 16 up to 1449 features, from 5 to 53 labels, and from 
1.20 to 6.34 average number of labels per example. 

 



 

 domain N/T D Q lc

water quality ecology 721/339 16 14 5.07 
emotions music 391/202 72 6 1.87 
mediana text 5318/2635 79 5 1.20 
soil quality ecology 1308/636 54 39 6.34 
medical text 645/333 1449 45 1.25 
enron text 1123/579 1001 53 3.38 

Table 1. Description of the datasets in terms of application 
domain, number of training (N) and test (T) examples, the 
number of features (D), the total number of labels (Q) and 
label cardinality (lc). The problems are ordered by their 
overall complexity roughly calculated as N x D x Q. 

 
4.2 Evaluation measures  

The evaluation of the predictive performance for 
multi-label learning systems differs from that of classical 
single-label learning systems. In any multi-label experiment, 
it is essential to include multiple and contrasting measures 
because of the additional degrees of freedom that the multi-
label setting introduces. In our experiments, we used various 
evaluation measures that have been suggested by 
Tsoumakas et al [1]. In particular, we used six example-
based evaluation measures: Hamming loss, accuracy, 
precision, recall, F1 score and subset accuracy.  

In the definitions below, Yi denotes the set of true 
labels of example xi and h(xi) denotes the set of predicted 
labels for the same examples. All definitions refer to the 
multi-label setting. 

Hamming loss evaluates how many times an example-
label pair is misclassified, i.e., label not belonging to the 
example is predicted or a label belonging to the example is 
not predicted. The smaller the value of hamming_loss(h), 
the better the performance. The performance is perfect when 
hamming_loss(h) = 0. This metric is defined as: 
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where Δ stands for the symmetric difference between the 
two sets, N is the number of examples and Q is the total 
number of possible class labels. 

Accuracy for a single example xi is defined by the 
Jaccard similarity coefficients between the label sets h(xi) 
and yi. Accuracy is micro-averaged across all examples. 
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Precision is defined as: 
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Recall is defined as: 
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F1 score is the harmonic mean between precision and 
recall and is defined as: 
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F1 score is an example based metric and its value is an 
average over all examples in the dataset. F1 score reaches its 
best value at 1 and worst at 0. 

 
Subset Accuracy is defined as follows: 
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where I(true) = 1 and I(false) = 0. This is a very strict 
evaluation measure as it requires the predicted set of labels 
to be an exact match of the true set of labels. 
 
4.3 Experimental setup 
We used the predictive clustering framework implemented 
in the CLUS system to investigate the performance of the 
different distance measures. To this end, we constructed 
single PCTs.  

The PCTs were pruned with the F-test pruning method. 
This method checks whether a given test statistically 
significantly reduces the intra-cluster variance at a given 
significance level. An optimal significance level was 
selected by using internal 3-fold cross validation, from the 
following values: 0.01, 0.02, 0.03, 0.04 and 0.05.  
 
5 RESULTS 
Tables 2, 3, 4, 5, 6 and 7 show the results from the 
experimental evaluation of the distance measures.  In the 
following, we briefly discuss the results for each evaluation 
measure. The Hamming distance has best predictive 
performance according to the Hamming loss measure. This 
is expected, since the trees with this distance are set to 
optimize that measure. Furthermore, since the Euclidean and 
Hamming distance are quite similar for vectors with 1/0 
values, the Euclidean distance also has good predictive 
performance. On average, the Jaccard distance has the 
lowest predictive performance. 
 
 Euc. Ham. Jac. MD 
water quality 0.314 0.309 0.528 0.312 
emotions 0.249 0.272 0.274 0.253 
mediana 0.157 0.165 0.355 0.203 

soil quality 0.106 0.099 0.169 0.100 

medical 0.013 0.013 0.014 0.013

enron 0.058 0.055 0.062 0.057 

Table 2. The Hamming loss measure for different distances 

In terms of accuracy, the Euclidean, Hamming and MD 
distance have similar predictive performance on average, 
while the Euclidean distance has the best performance on 
three datasets. The Jaccard distance, on the other hand, has 
the worst performance on average. 
 
 



 

 Euc. Ham. Jac. MD 
water quality 0.298 0.315 0.370 0.317 
emotions 0.496 0.469 0.488 0.493 
mediana 0.589 0.588 0.302 0.505 

soil quality 0.481 0.502 0.347 0.504 

medical 0.733 0.731 0.718 0.727 

enron 0.413 0.435 0.427 0.425 

Table 3. The accuracy for the different distances 

The precision and recall have inverted values. In the case of 
precision, Jaccard distance is the best performing, while for 
recall it is the worst performing. The distance to the other 
methods is large in the both cases. This means that the labels 
produced with Jaccard distance are reliable (low false 
positive rate); however, they do not cover all relevant labels 
for a given example (high false negative rate). The other 
three distances have similar performances to each other. 
 
 Euc. Ham. Jac. MD 
water quality 0.352 0.382 0.860 0.390 
emotions 0.583 0.561 0.635 0.580 
mediana 0.605 0.641 0.465 0.602 

soil quality 0.595 0.606 0.556 0.618 

medical 0.755 0.761 0.746 0.755 

enron 0.502 0.524 0.558 0.523 

Table 4. The precision for the different distances  

 
 Euc. Ham. Jac. MD 
water quality 0.625 0.623 0.397 0.614 
emotions 0.613 0.592 0.571 0.600 
mediana 0.722 0.704 0.359 0.595 

soil quality 0.719 0.730 0.492 0.712 

medical 0.779 0.787 0.771 0.776 

enron 0.568 0.600 0.552 0.572 

Table 5. The recall for the different distances  

The F1 score balances the performance measured by the 
precision and the recall. On average, the Jaccard distance 
has the lowest performance (because of the weak results for 
recall). The Hamming distance is slightly better than the 
remaining two distances. 
 
 Euc. Ham. Jac. MD 
water quality 0.423 0.441 0.523 0.444 
emotions 0.574 0.551 0.575 0.568 
mediana 0.634 0.642 0.385 0.567 

soil quality 0.617 0.634 0.491 0.635 

medical 0.757 0.760 0.746 0.753 

enron 0.515 0.543 0.535 0.530 

Table 6. The F1 scores for the different distances 

The subset accuracy measures the fraction of the complete 
and accurate predictions. In this regard, the Euclidean 
distance has the best average performance, while MD is the 
best performing distance on four datasets. The worst 
performing distance is the Jaccard distance. 
 
 Euc. Ham. Jac. MD 
water quality 0.009 0.012 0.000 0.018 
emotions 0.262 0.233 0.223 0.272 
mediana 0.468 0.440 0.063 0.327 

soil quality 0.036 0.041 0.003 0.044 

medical 0.661 0.640 0.631 0.646 

enron 0.145 0.149 0.149 0.150

Table 7. The subset accuracy for the different distances  

6  CONCLUSIONS 
In this paper, we have presented an experimental evaluation 
of four distance measures for multi-label classification. The 
evaluation was performed on 6 benchmark datasets using 6 
evaluation measures.  
The results show that there is no overall best distance 
measure. The best choice for a distance measure is the one 
that optimizes a selected evaluation measure. For example, 
the Hamming distance works the best when optimizing the 
Hamming loss, while the best according to precision is the 
Jaccard distance (since there is a strong connection between 
precision and the Jaccard coefficient). All in all, the 
Euclidean distance and Hamming loss perform the best 
averaged across all evaluation measures. 
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