

ANALYSIS AND PREDICTION OF BUG DUPLICATES
IN KDE BUG TRACKING SYSTEM

Gregor Leban

Artificial Intelligence Laboratory
Jozef Stefan Institute

Jamova 39, 1000 Ljubljana, Slovenia
Tel: +386 1 477-53-61

e-mail: gregor.leban@ijs.si

ABSTRACT

Bug tracking systems (BTS) are systems that allow users
of some software to report to developers bugs they
encountered while using it. Common problem of BTS
are duplicated reports of the same bug. Since identifying
bug duplicates is a time consuming task we show in this
paper an approach to automatically identifying
duplicates using text-mining methods. We demonstrate
the usability of our method on KDE Bugzilla BTS which
contains 249,083 bug reports of which 47,093 are
duplicates.

1 INTRODUCTION

Software developing companies and organizations very
often use bug/issue tracking systems (BTS) such as
Bugzilla[1], Mantis[2] or LaunchPad[3]. Using such
systems, users can report to the developers the issues they
encountered while using the software. Bug reports consist
of a structured and unstructured part. The structured part of
the report contains the name of the product where the
problem occurred, the component’s name, status of the bug,
priority and severity. The unstructured part contains the
summary of the bug and a description. The provided
information should ideally be enough for the developer to
identify the problem and fix it. People can also post
comments to bug reports where they can clarify the
problem or provide additional information or solution to the
problem. It is common for a bug to have tens of comments.
One of the difficulties with bug reports is that they are
reported by users who don’t have an overview of the
existing bug reports. As a consequence, many reports
describe an issue that has already been reported sometime
in the past. Such redundant reports are called bug
duplicates. The reason they are problematic is that a lot of
time is wasted because of them. They falsely appear to
provide information about a new issue and can cause
different developers to not-knowingly work on fixing the
same bug. To avoid such loss of time a bug is often first
inspected if it is a duplicate. If a bug is identified as such,
bug tracking systems allow users/developers to explicitly
mark them as duplicates to let others know that they can be

disregarded. Identifying a bug as a duplicate is however a
difficult and imprecise task which requires a lot of time.
In order to alleviate the problem of manually identifying
bug duplicates ALERT[4], an EU project that aims to help
open source communities to more efficiently manage
projects, plans to implement automatic methods that will be
able to determine if a given bug is a duplicate. In this paper
we will present our first experiments in this area which
show promising results.
We will start by introducing the bug tracking system that
we used in our experiments and describe the way in which
the data was processed. Next we will present the algorithm
used to identify the duplicates and show its performance.
We will conclude with a summary and some ideas for
future work.

2 KDE BUG TRACKING SYSTEM

KDE[5] is an international software community that is
developing a set of free, cross-platform applications. They
have more than 1,800 developers who have created more
than 6 million lines of code. We selected KDE as our case
study because they are partners in the ALERT project.
KDE uses Bugzilla BTS to track bugs. KDE started using
Bugzilla in 1999 and until August 2010 249,083 bugs were
reported. On average there are almost 2,000 bugs reported
per month. As for most projects, the number of duplicate
reports represent a significant percentage of the repository.
In the KDE repository, almost every fifth report is a
duplicate. What is even worse is that the ratio of duplicates
seems to increase over time and has in the past already
reached the value of 0.42.
Out of 249,083 bugs 47,093 were manually marked as bug
duplicates. In most cases there is only one duplicate of a
bug. Figure 1 shows that there are more than 10,000 such
reports. Similarly, there are 3,000 cases where there are two
duplicates of one bug. As we can see, the numbers quickly
decrease, although we can even find a bug that has 251
duplicated reports.

2.1 Importing the data

In order to be able to analyze the data and predict the
duplicates we imported the content of KDE Bugzilla into

Contextify[6]. For each bug report we treated the initial
description of the bug and all the following comments as
individual documents – in the same way as the data is also
stored in Bugzilla. Each of these documents was stored in
Contextify in the form of bag of words. As a part of the pre-
processing we also ignored the stop words and stemmed the
words using the Porter stemmer.

3 PREDICTING THE DUPLICATES

There are different tasks that we can identify regarding the
prediction of bug duplicates. One task could be to build a
model that would be able to classify a given bug report as a
duplicate or non-duplicate. On the surface our problem
seems like a typical binary classification problem. Each bug
report in the repository represents one learning example, the
words in the report are the attributes and the value of the
class is 1 or 0, depending on whether the bug has a marked
duplicate or not. However, if we think a bit about this
definition of the problem we can see that it is not very
sensible. Words themselves don’t carry any valuable
information that would enable us to separate reports into
two classes. Reports that mention, for example, the word
“kmail” are no more likely to be duplicates than the reports
that mention “gnome”. If such differences do exist they can
only be accidental and using them would only lead to an
over-fitted model. The classification model could
potentially be improved by adding as attributes the
available meta-data that is present in bug reports. By
observing the author of the bug report, for example, the
model could perhaps identify a group of people who more
often than others submit bug duplicates. Since people
usually don’t intentionally submit bug duplicates such
discoveries are unlikely and would not significantly
improve the accuracy of the model.
As an alternative option for building a classification model
we could also consider the following scenario. Each bug is
again a learning example and the words in the report are the
attributes. In this case, each bug has a different class value
except the duplicates. All the duplicates of a particular bug
would have the same class value as the original bug report.
The classification model built on such data could predict

that a new bug report is the duplicate of an existing bug. If
the prediction would be probabilistic we could say that if
the probability of the most likely class is below a certain
threshold then the bug is not a duplicate. There are two
related problems with this approach. As the number of
reported bugs increases so does also the number of possible
classes. Having 200,000 possible classes is unacceptable
since there are no methods that could build a reliable model
with so many classes. Also, in order for a method to build
an accurate model it has to generalize the learning
examples. In this scenario, however, most of the class
values only have one learning example (exceptions are bug
duplicates) which doesn’t allow us any generalization.
Classification models built in this way are consequently
also bound to be inaccurate.
What is it therefore that we can do with this data? What we
can is for a given bug to successfully identify other bug
reports that are similar and get a numerical value of this
similarity. In this case we can’t say that the given bug B1 is
a duplicate but we can say, for example, that the most
similar bug to B1 is B2 and that similarity between them is
0.56. Such result is not as useful as classification would be,
but a list of most similar bugs would still be very helpful
for the person who is about to commit a new bug report.
Potentially we could also set a threshold for similarity and
say that the bug is a duplicate if the similarity exceeds the
selected threshold.

3.1 Computing similarities between bug reports

As stated before, each bug report contains an initial
description of the bug and potentially any number of
comments. Since we expect that the comments can contain
valuable additional information about the bug we decided to
concatenate the subject of the bug, the initial description
and all the comments into one report and to treat this as a
single document when we import bugs into Contextify.
Documents are in Contextify represented using the vector
space model. Each term in the document is weighted using
the TF-IDF weighting scheme. We computed term
frequency (TF) and inverse document frequency (IDF) for
term ti in document dj as:

𝑇𝐹𝑖,𝑗 = 𝑓𝑖,𝑗 𝐼𝐷𝐹𝑖 = log
𝑁
𝑛𝑖

where fi,j is the frequency of term ti in document dj, N is the
number of all documents and ni is the number of documents
that contain ti. There are several variants of term-weighting
and we decided to compute TF-IDF weight wi,j simply as:

𝑤𝑖,𝑗 = 𝑇𝐹𝑖,𝑗 × 𝐼𝐷𝐹𝑖

In order to compute similarities between bug reports we
also need a measure that would evaluate the correlation
between any two reports. We used cosine similarity which
is the standard measure for quantifying this correlation. For
documents dk and dl we computed the similarity
𝑠𝑖𝑚(𝑑𝑘 ,𝑑𝑙) as:

Figure 1: Distribution of the number of times the
same bug was reported. For example, in 3,000
cases there were two duplicate reports created for
the same bug.

𝑑𝑘 = �𝑤1,𝑘,𝑤2,𝑘, … ,𝑤𝑀,𝑘�
𝑑𝑙 = �𝑤1,𝑙 ,𝑤2,𝑙 , … ,𝑤𝑀,𝑙�

𝑠𝑖𝑚(𝑑𝑘 ,𝑑𝑙) =
𝑑𝑘����⃗ ∙ 𝑑𝑙���⃗

�𝑑𝑘����⃗ � × �𝑑𝑙���⃗ �

3.2 Comparison of similarities between duplicates and
non-duplicates

Using the described measure we can now compute similarity
between any two bug reports. The question that now arises is
how well can this similarity be used to detect bug duplicates
– in other words, do bug duplicates really use more similar
words in their descriptions than non-duplicates?
To answer this question we performed the following
experiment. First we computed for all bugs that don’t have
duplicates and are not marked as duplicates what is the
similarity of their most similar bug report. We then
performed a similar computation on bugs that have
duplicates (we’ll call them original bugs) or are marked as a
duplicate. We created sets of bugs where each set consisted
of one original bug and all its duplicates. For each bug in the
set we computed similarities with other bugs in the set and
remembered the maximum value. A graph displaying
probability density function of similarities for these two
groups of bugs is displayed in Figure 2. As it can be seen,
the curves are similar, although the curve for non-duplicates
is shifted more to the left and has lower density for higher
values of similarity. Based on the graph we can conclude
that the similarities are higher between duplicated reports
but there is no good threshold that would allow us to
accurately classify the bug as duplicate or not based on the
highest similarity.

3.3 Ranking bug reports based on similarity

Although classification based on similarity is not accurate
we can still help the users to identify bug duplicates. For a
selected bug report we can compute a ranked list of most
similar bug reports. The user can then inspect the list and
decide if the bug is a duplicate or not. If the ranking is good
it would be enough for the user to check only the first few
reports in order to decide if the report is a duplicate or not.
To test how much can the ranking help the users to identify
the duplicates we performed an experiment. For each bug

report that has duplicated reports we computed a ranked list
of 100 most similar bug reports in the whole repository. We
then checked how well are the duplicated reports of the bug
ranked in this list. This is a standard information retrieval
task where the query is the tested bug report and the answer
set is the set of similar reports.
There are different metrics that can be used to evaluate the
success of this task. Commonly used measures are precision
and recall. They are not the most appropriate for us since we
(1) are only interested where in the list is the first correct
answer (duplicate) and (2) there is most often only one
correct answer (most bugs have only one duplicate) which
would automatically result in low precision. Instead we
decided to use mean reciprocal rank that is often used in
question answering systems. Reciprocal rank is the inverse
of the rank of the first correct answer and mean reciprocal
rank (MRR) is the average of the reciprocal ranks for a
sample of queries Q:

𝑀𝑅𝑅 =
1

|𝑄|�
1

𝑟𝑎𝑛𝑘𝑖

|𝑄|

𝑖=1

Our set of queries Q consisted of 63,861 reports (duplicated
+ original bug reports) and the computed MRR was 0,374.
The Figure 3.a shows the percent of detected duplicates in
relation to the number of inspected reports. The full line
shows the results we obtained by comparing the test reports
with all other bug reports in the repository. We can see that
the curve is very steep and by looking at the first 5 most
similar bug reports we can detect more than 45% of all
duplicates.
In order to additionally improve the ranking we wanted to
see if we can use some information from the meta-data of
the reports. For each bug report, the user has to specify to
which product it belongs and then even more specifically to
which component inside the selected product. The
information about the selected product and component is
then stored as meta-data of the report. Our expectation is
that we can use this information to improve the ranking by
only considering those reports that are assigned to the same
product/component. The influence of this information on
ranking is also shown in Figure 3.a. Interestingly we can see
that using the product information improves the ranking,
while using the component information has a detrimental
effect. The reason for this is that users sometimes assign the
bug to the wrong product/component. In Bugzilla, there are
almost 5,000 duplicates that are assigned to the wrong
product and more than 12,000 that are assigned to the wrong
component. If we only consider reports within the same
product/component we therefore cannot locate the duplicate
for these reports which in turn degrades the ranking quality.
We were also interested in knowing if the initial bug
descriptions contain all the necessary information needed to
identify the duplicates or do the following comments also
contribute something valuable. For this we again for all
duplicated reports computed 100 most similar reports in the
whole repository, but this time the documents representing
the reports consisted only of the bug subjects and the initial

Figure 2: The comparison of similarities between
duplicated reports and reports without duplicates.

descriptions (without comments). Results are shown in
Figure 3.b. It is evident that the ranking without using
comments is worse which indicates that comments are
valuable and should also be used when identifying
duplicates.

4. Related work

The presented work does not present any new methods but
only demonstrates the applicability of existing approaches
on a special use case. The most related work was done by
Hiew[7] who searched for similar bugs by first computing
centroids of related bugs. Čubranić and Murphy’s Hipikat[8]
project determines which reports in a repository are similar
to each other using an information retrieval algorithm. Wang
describes another approach to detecting bug duplicates using
natural language and execution information[9]. Automatic
detection of duplicate documents has also been considered
in other contexts. In large document collections, for
example, the duplicates are identified to maintain the speed
of search engines[10].

5 CONCLUSION AND FUTURE WORK

We have presented our preliminary work in the field of
automatically identifying bug duplicates. First we have
described the details of the KDE BTS that was used as our
case study. Next, we described the preprocessing steps that
we used to represent the bug reports in the vector space
model. We defined the similarity measure used and
evaluated how accurately we can rank duplicated bug
reports.
We have several ideas for future work. First we plan to
inspect the reports that have high similarity and are not
marked as duplicates. We will identify what is the common
property of these reports (for example, they might be very
short reports, or might contain common phrases that are
computer generated, like “no debugging symbols found”)
and try to take this information into account when weighting
terms or computing similarity between reports. Another idea

is to check how informative the date of the reported bug is.
Since new bugs occur with new releases of the software it is
probably more likely that two reports are duplicates if they
are closer in time. We will also try to improve the use of the
meta-data like product/component information. Instead of
considering only reports in the same product we can soften
the constraint to include also related products.

6 ACKNOWLEDGMENTS

This work was supported by the Slovenian Research
Agency, European Social Fund and ALERT (ICT-
2009.1.2).

References

[1] “Bugzilla,” 2011. Available: http://www.bugzilla.org/.
[2] “Mantis,” 2011. Available: http://www.mantisbt.org/.
[3] “LaunchPad,” 2011. Available: https://launchpad.net/.
[4] “ALERT,” 2011. Available: http://www.alert-project.eu/.
[5] “KDE,” 2011. Available: http://www.kde.org/.
[6] G. Leban and M. Grobelnik, “Displaying email-related

contextual information using Contextify,” International
Semantic Web Conference, Shanghai, China, 2010, pp.
181-184.

[7] L. Hiew, “Assisted detection of duplicate bug reports,”
The University Of British Columbia, 2006.

[8] D. Cubranic and G. C. Murphy, “Hipikat:
Recommending pertinent software development artifacts,”
2003.

[9] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An
approach to detecting duplicate bug reports using natural
language and execution information,” in Proceedings of
the 30th international conference on Software engineering,
2008, pp. 461–470.

[10] A. Chowdhury, O. Frieder, D. Grossman, and M. C.
McCabe, “Collection statistics for fast duplicate document
detection,” ACM Transactions on Information Systems
(TOIS), vol. 20, no. 2, pp. 171–191, 2002.

(a) (b)

Figure 3. The percent of detected duplicates in relation to the number of inspected reports. The figures show how the
use of the meta-data (a) and the use of comments in the reports (b) influences the accuracy of the ranking.

	Gregor Leban
	References

