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ABSTRACT 

 

Hubness is a phenomenon present in many high-
dimensional data sets. It is related to the skewness in the 
distribution of k-occurrences, i.e. occurrences of data points 
in k-neighbor sets of other data points. Several hubness-
aware methods that focus on exploiting this phenomenon 
have recently been proposed. In this paper, we examine the 
potential impact of weighting the k-occurrences, by taking 
into account the distance between the respective data 
points, on hubness-aware nearest-neighbor methods, more 
specifically hw-kNN, h-FNN and HIKNN. We show that 
such distance-based weighting can be both advantageous 
and detrimental and that it influences different methods in 
different ways. 

 
1  INTRODUCTION 
 
Nearest-neighbor classification methods are often used in 
machine learning tasks, due to their inherent simplicity and 
good asymptotic properties. They are based on a notion that 
similar data points often share the same label. Let D = {x1, 
x2, .. xN} be the training set. 1-NN classification rule is quite 
simple: given the point of interest x, find the point  from D 
that is closest to x according to some appropriate distance 
function d(x, . ), and denote this point by NN(x); assign the 
label of NN(x) to the new point x. Due to the common 
sparsity of data, as well as noisy measurements and records, 
a generalized kNN rule is usually used instead, where a 
label of a new instance is determined by a majority vote of 
its k nearest neighbors [1]. 
 
Many extensions to the basic algorithm have been proposed 
over the years, offering modifications of various stages of 
the classification process. Attribute weighting was 
successfully used in conjunction with nearest-neighbor 
classification [2]. Fuzzy approaches were also shown to be 
quite promising [3][4][5]. Recently, large margin kNN was 
introduced, which achieves accuracy comparable to other 
state of the art classification methods [6]. 
 
Hubness is a phenomenon attributed to high-dimensional 
data which has potentially severe consequences for nearest-
neighbor methods [7]. Denote by Nk(x) the number of k-
occurrences of x, i.e. the number of times x appears in k-
neighbor sets of other data points. It has been noted that the 
distribution of Nk(x) exhibits high skewness when the 

inherent dimensionality of the data is high. This leads to the 
emergence of hubs, influential data points. Hubs have been 
shown to appear frequently in many kinds of high-
dimensional data, like time series, music and images.  
Several approaches to exploiting the hubness of the data 
have recently been proposed [7][8][9][10]. Improvement 
over the basic kNN was frequently present. 
 
2 A BRIEF OVERVIEW OF THE USED HUBNESS-
BASED NEAREST-NEIGHBOR CLASSIFICATION 
METHODS 
 
We can distinguish between two sorts of hubs: the good 
hubs and the bad hubs, based on the usefulness of their 
influence in kNN classification. Consequently, we define 
good hubness (GNk(x)) and bad hubness (BNk(x)) so that 
Nk(x) = GNk(x) + BNk(x), where BNk(x) denotes the number 
of label mismatches between x and data points where x 
appears in k-neighbor sets. Also, denote by Nk,c(x) the 
number of k-occurrences of x in neighbor sets of elements 
belonging to class c. We will refer to this quantity as class 
hubness. Three types of approaches to exploiting previous 
occurrences have been proposed voting by label, voting by 
class hubness and combined voting.  
 
2.1 VOTING BY LABEL 
 
In hw-kNN[7], the basic weighted k-nearest neighbor 
voting framework is retained. Each neighbor votes by its 
own label and the label weight is determined so as to 
minimize the influence of bad hubs on classification 
outcome. The weights are set as e-h

b
(x), where hb(x) is 

standardized bad hubness. Even this simple weighting 
scheme was shown to often lead to significant 
improvements over the basic kNN algorithm. 
 
2.2 VOTING BY CLASS HUBNESS 
 
Instead of observing only good and bad hubness, it is 
possible to take into account class-specific previous k-
occurrences, i.e. class hubness [8][9]. The h-FNN 
algorithm is based on this notion and it integrates class 
hubness information into a fuzzy k-nearest neighbor voting 
framework. It uses a threshold to distinguish between low-
hubness points (anti-hubs) and medium-to-high hubness 
points where inference based on class hubness is 



 

meaningful. Therefore, it requires a separate mechanism to 
deal with anti-hubs.  
 
2.3 COMBINED VOTING 
 
Hubness-information k-nearest neighbor (HIKNN) [10] is a 
robust algorithm which uses both the information contained 
in an instance label and the information contained in its 
previous occurrences. This approach is based on an 
information-theoretic perspective, so that the vote of x is 
shifted more towards using class hubness if Nk(x) is high 
and more towards the label of x if Nk(x) is low. The 
algorithm also weights all the individual fuzzy votes based 
on their total occurrence frequencies, so that more weight is 
given to anti-hubs, since they are considered more local to 
the point of interest and, therefore, more important when 
trying to determine its label. 
 
3  WEIGHTING THE K-OCCURRENCES 
 
Weighted voting in kNN helps in implicitly reshaping the 
neighborhood to give more emphasis to the closer 
neighbors. Choosing the proper k is far from trivial and 
sometimes no global neighborhood size gives satisfactory 
results. 
 
Since this idea is commonly encountered, we wished to see 
what the effects would be if the same line of reasoning was 
applied when dealing with inverse neighbor sets. The final 
voting in h-FNN and HIKNN is also distance-weighted, so 
introducing some sort of weighting in class hubness 
calculations does seem somewhat reasonable. 
 
On the other hand, hw-kNN does not employ distance-
based weighting. It is based on the simple idea of weighting 
down the votes of bad hubs. Introducing some weights in 
the inverse neighbor sets might reduce the bad hubness 
estimates and increase the voting weights of bad hub 
points, which may in fact have an overall negative 
influence on the final classification accuracy. So, 
intuitively, we would expect to see differences in how these 
three algorithms change under weighted hubness scores. 
 
We opted for testing a very simple distance-based 
weighting scheme for calculating class hubness scores. 
Denote by NN(x) the nearest-neighbor of x. Let Dk(x) be 
the k-neighborhood of x. We define weighted hubness score 
of  xi  as: 
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Weighted good and bad hubness (WGNk(x) and WBNk(x)), 
as well as weighted class hubness scores (WNk,c(xi)), are 
defined analogously to their non-weighted counterparts. 
 

 
 
4  EXPERIMENTAL SETUP 
 
For small neighborhood sizes, weighted class hubness 
calculations would have little to no effect, since all 
neighbors would be close to the points of interest. For 
larger neighborhoods, the tendency of some neighbors to be 
much further away than others is amplified. This is why we 
chose to run all the experiments for a fixed value of k=30. 
 
In order to reduce the influence of a particular anti-hub 
handling method in h-FNN, we opted for eliminating any 
such separate case of neighbor handling by setting the 
threshold value θ in h-FNN to zero. This means that in h-
FNN every instance votes purely by class hubness scores 
from its previous k-occurrences. Since every element is by 
default included in its own neighborhood, Nk(x) > 0 for 
every x, which avoids the pathological case of zero 
hubness. 
 
We selected 15 publicly available datasets, 10 from the 
UCI data repository and 5 from ImageNet repository [13]. 
10-times 10-fold cross validation was performed on every 
data sets for all the algorithms and the corrected resampled 
t-test was used to check for statistical significance. The 
results are given in Table 1. . The shortened UCI dataset 
names in the table correspond to colonTumor, vowel, ecoli, 
parkinsons, sonar, ionosphere, vehicle, segment, isolet, 
mfeat-factors. Since UCI data exhibits low-to-medium k-
occurrence skewness [8][9][10], some high-dimensional 
and high-skewness data was also included in the 
experiments. Datasets I-s3 to I-s7 represent five different 
subsets of images and they are composed of 3,4,5,6 and 7 
categories, respectively [8]. The images are represented in a 
hybrid way, by combining the 400-dimensional quantized 
SIFT representation [11] and a 16-dimensional color 
histogram representation. SIFT features [12] capture the 
local information contained in highly textured image parts 
and are calculated at certain interesting keypoints [14]. 
Color histograms, on the other hand, capture the global 
color information. In our experiments, these two 
representation parts are given equal weight in distance 
calculations. 
 
The Manhattan metric (sum of absolute differences) was 
used in all the experiments. 
 
It is clear from the results shown in Table 1 that, most of 
the time, there is no significant difference if the weighted 
hubness scores are used. On the other hand, when there is a 
difference between the weighted and non-weighted 
implementations, it tends to be detrimental in hw-kNN and 
beneficial in h-FNN and HIKNN as expected.  
 
So, in which cases does using the weighted hubness scores 
improve the classification result in h-FNN and HIKNN? In 



 

order to partially answer this question, we tested the 
algorithms on the vowel dataset for a range of different 
neighborhood sizes k = {2,3..30}. The resulting accuracies 
are shown in Figure 1 and Figure 2. 
 
 

 kNN hw-
kNN 

whw-
kNN 

h-
FNN 

wh-
FNN 

HI-
kNN 

wHI-
kNN 

cTum 72.3 65.4 63.1 62.7 63.4 64.1 64.7 

vowel 84.3 57.4 60.3● 62.3 75.4● 78.4 85.4●

ecoli 82.0 85.6 84.4 86.5 86.3 86.3 86.0 

psons 90.3 83.3 84.8 84.6 85.3 85.7 85.7 

sonar 82.4 73.5 71.5 71.7 72.1 77.3 76.6 

ionos 79.7 86.3 82.6 87.5 87.2 87.0 87.6 

vehic 61.7 62.4 61.9 59.6 60.6 62.0 62.3 

seg 86.4 78.6 78.8 79.6 82.7● 82.9 86.1●

isolet 74.2 85.4 87.5 84.5 85.1 87.2 87.8 

mfact 94.5 94.2 93.6 94.0 94.3 94.9 94.9 

I-s3 71.2 84.8 80◄ 82.7 82.7 84.5 84.4 

I-s4 55.4 68.4 63.7◄ 63.9 64.1 67.4 67.4 

I-s5 45.8 64.3 53.8◄ 61.1 61.0 65.4 65.3 

I-s6 58.9 70.7 70.2 68.0 68.0 70.9 70.9 

I-s7 43.0 63.1 49.9◄ 59.2 59.1 62.2 62.1 

AVG 72.14 74.89 72.41 73.86 75.15 77.08 77.81 

 
Table 1: A comparison of classifier accuracies for 
neighborhood size of k=30. Algorithm implementations 
using the WNk(xi) are given with prefix “w”. A filled circle 
(●) marks those cases where the weighted implementations 
were significantly better. Inversely, a filled triangle (◄) 
shows when significant deterioration was observed. 
Significance level p=0.01 was used in all cases. 
 
Both vowel and segment (the two datasets where the 
improvement was observed) are datasets where the 
classification accuracy deteriorates with increasing 
neighborhood sizes. The rates of deterioration of kNN, h-
FNN and HIKNN are not the same, though. The basic kNN 
falls to an accuracy plateu, while the accuracies of the two 
hubness-based algorithms continue to drop – more steeply 
in the case of h-FNN. The use of weighted hubness seems 
to reduce the deterioration rate, resulting in constantly 
better performance of the weighted implementations, over 
the entire k-range.  
 
If it turns out that this is indeed the only case where one 
might improve by using the weighted hubness scores, then 
their usefulness is rather limited, since they do not, in fact, 
lead to an overall improvement on the dataset, given that 

the best results are obtained for k = 1 where there is no 
weighting. 
 

 
 
Figure 1: Accuracies of weighted and non-weighted class 
hubness implementations of HIKNN for k = {2,3..30} on 
vowel dataset. The basic kNN is given as a baseline for 
comparison. 
 

 
 
Figure 2: Accuracies of weighted and non-weighted class 
hubness implementations of h-FNN for k = {2,3..30} on 
vowel dataset. The basic kNN is given as a baseline for 
comparison. 
 
As for the global influence of weighting on hubness scores, 
we compared the resulting skewness in k-occurrence 
distributions of weighted and non-weighted occurences. 
This is illustrated in Figure 3, where the difference between 
the two skewness values is shown for each of the used 
datasets. We see that in 14 out of 15 datasets there is a 
noticeable increase in the k-occurrence skewness when 
weighting is used. 
 
Since any increase in the Nk(x) distribution skewness 
entails higher hubness of the data, it is clear how this might 
occasionaly prove beneficial to hubness-based algorithms. 
On the other hand, even if these algorithms are designed so 
as to take data hubness into account, this does not imply 
that, for any specific dataset, they achieve the best 
performance when the hubness of the data is at the highest 
point. The observed increase in the skewness may even 
prove more useful in the unsupervised case, if used for 
hubness-proportional clustering (HPC) [15]. 



 

 

Figure 3: The difference between weighted and non-
weighted k-occurrence skewness for datasets from Table 1, 
given in the same order (1 – cTum, 2 – vowel, etc.). 
 
7 CONCLUSION 
 
Data hubness, as a consequence of high inherent 
dimensionality, is a phenomenon of great importance 
for nearest-neighbor classification. We have explored 
how the potential weighting of class hubness scores 
affects several recently proposed hubness-based 
algorithms, namely hw-kNN, h-FNN and HIKNN. We 
observed occasional improvements in case of h-FNN 
and HIKNN, as well as performance deterioration in 
hw-kNN, which is in agreement with our starting 
hypothesis. We also detected a noticeable increase in 
k-occurrence skewness in the weighted case. 
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