
Visual divisive hierarchical clustering using k-means

Matic Perovšek1, Nada Lavrač1,2, Bojan Cestnik1,3

1 Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia
2 University of Nova Gorica, Nova Gorica, Slovenia

3 Temida d.o.o., Ljubljana, Slovenia
{matic.perovsek, nada.lavrac, bojan.cestnik}@ijs.si

ABSTRACT
This paper presents a browser-based semi-automatic tax-
onomy construction tool Vd-chuck which is able to in-
corporate text and data mining algorithms into a user-
friendly interface. The presented system is browser-
based. Its unsupervised learning for concept suggestion
and different visualization techniques assist the user with
textual and numerical data analysis. We tested the Vd-
chuck system on a real-world domain: a corpus of docu-
ments taken from Slovenian Language technologies con-
ferences. The results show that with our system similar
taxonomies as with other taxonomy editors can be con-
structed.

1 INTRODUCTION
Taxonomies and ontologies have been often considered as the
most adequate knowledge representation formalisms for rep-
resenting the relations between different domain objects. New
directions for future ontology editors have been stimulated by
the rapid growth in the need of textual and numerical data
analysis, growth of the internet and also by the need for mo-
bility and collaboration. All current major ontology editors
(e.g. Protege [2], OntoStudio [13], Ontogen [1]) offer lit-
tle support for user collaboration and mobility, while existing
browser-based editors (e.g. Web-Protoge [12], Knoodl1) pro-
vide only basic ontology editing functionality with barely no
tools for visualization.
Vd-chuck is a browser-based taxonomy editor, offering a sim-
ilar functionality as the desktop topic ontology editor Onto-
gen [1]. Ontogen allows users construction of new topic on-
tologies, as well as visualization and exploration of the exist-
ing. Vd-chuck’s main advantage over Ontogen is its acces-
sibility. Since it is browser-based, it can be accessed from
anywhere at any time. The Vd-chuck system combines sev-
eral data mining and text mining techniques with an intuitive
user interface. Different tasks require building taxonomies
differently, so it is essential to include the user’s knowledge as
well. Vd-chuck is semi-automatic, which means that it is able
to provide suggestions–such as concept naming, concept rela-

1http://knoodl.com

tions, assigning examples to concepts–during taxonomy con-
struction. Although Vd-chuck supports simplified taxonomy
and concept generation, it in the end still relies on the user’s
background knowledge to make appropriate corrections.
The paper is organized as follows. In Section 2 we present
the main components of the Vd-chuck system. As Vd-chuck
was inspired by Ontogen, we provide a comparison between
the two in Section 3. In Section 4 we present a real-world use
case of our system on a textual domain. Section 5 concludes
the paper and gives some ideas for further development.

2 OVERVIEW OF THE VD-CHUCK SYSTEM
This section describes three major components of the Vd-
chuck system: the concept hierarchy, concept management
and finally concept visualization.

2.1 Concept hierarchy
One of the main components of the Vd-chuck system is the
concept hierarchy tab, which is always present in the upper-
left side of the screen (Figure 1). It shows the structure of the
taxonomy in a tree-structured way, while giving the user an
option of concept selection.

Figure 1: Vd-chuck’s taxonomy visualization tab: taxon-
omy’s concept hierarchy is displayed in the upper-left win-
dow; selected concept’s details are listed on the bottom-left
while the central part shows the taxonomy as a tree-structured
directed graph, representing the concept hierarchy.

1



Under the concept hierarchy window various details of the
currently selected concept are present: such as concept’s
name, example count, unused example count and the most
informative attributes. Example count represents the number
of all examples that are either part of the selected concept or
in one of its descendants, while the number of unused ex-
ample count represents the count of examples that are part
of the selected concept but are not present in any of its de-
scendants. The most informative attributes are the ten best
scored attributes using attribute ranking method InfoGain [7],
although when textual data is used ten words with the highest
TF-IDF [8] values are selected.
As we can see from Figure 1, the main part of the screen
presents an alternative visualization of the taxonomy—a di-
rected graph with vertices representing the concepts and and
edges representing relationship ’subconcept of’. Each con-
cept can be selected, renamed, deleted or even moved as a
subconcept to another concept by right clicking it and select-
ing the appropriate choice from the context menu.
The Vd-chuck system provides unsupervised learning for
concept suggestion. The unsupervised learning is performed
using the k-means clustering method [11], which uses one
of the distance metrics available for selection with numerical
data and cosine similarity [11] when using text data. Cluster-
ing can be done using the selected concept’s all examples or
only its unused examples. After clustering suggestions appear
on the screen and the user can manually add appropriate ones
to the taxonomy. Suggested concepts’ initial names are gen-
erated as top three most informative features/words for that
concept.
Another feature is creating concepts according to examples’
classes. This feature is useful when an existing taxonomy or
a dataset with a class variable needs to be altered or checked
for outliers [4].

2.2 Concept management
The Vd-chuck’s concept management tab is used to present
all examples in correlation with the selected concept’s cen-
troid. The centroid of every concept is calculated with the
k-means method as the average value for numerical attributes
and most frequent value for discrete. The distance used to cal-
culate the centroid depends on type of the data; when using
textual datasets, cosine similarity is used. When working with
numerical data, one of the following distances can be selected
as the dissimilarity measure: Euclidean, Manhattan, Relieff,
Hamming or PearsonR distance.
As shown in Figure 2.2, every example along with its unique
identifier and distance from the selected concept’s centroid
is listed in the main window. Examples that belong to the
selected concept (or one of its descendants) are marked with
a different color. When clicked upon, each feature (or textual
content for textual datasets) of the example is listed on the
right side of the main window.
A similarity graph of all examples with selected concept’s
centroid is shown on the bottom of the main window. Each

Figure 2: The concept management tab. Examples are listed
in the top middle, while the selected example’s content is
shown on the right. Similarity graph of examples with con-
cept’s centroid is drawn on the bottom of the screen.

example is presented with a dot, colored according to its be-
longing to the selected concept. The similarity graph is very
useful for outlier detection. The user can look at each ex-
ample and decide upon moving it to another (more suitable)
concept based on his own background knowledge. This can
be done by simply dragging it to the desired concept’s name
on the always-present concept hierarchy on the left.

2.3 Concept visualization
The problem of projecting multidimensional data into two
dimensional space has been investigated by different re-
searchers due to its potential application to data analysis. As
visualization is a useful tool for gaining insights into over-
whelming amounts of data, the Vd-chuck system provides
users with two different types of visualisation: multidimen-
sional scaling MDS [6] and a MDS-like distance-preserving
projection onto a 2D canvas, presented in [3].

MDS. MDS visualization uses dissimilarities between pairs
of different examples. As mentioned, in the Vd-chuck sys-
tem the user can choose between several similarity measures.
Vd-chuck uses Sammon’s projection [9] for mapping high-
dimensional spaces to spaces of lower dimensionalities. Sam-
mon’s projection tries to preserve the structure of inter-point
distances in high-dimensional spaces in the lower-dimension
projections. This is done by minimizing the error function,
which is often referred to as Sammon’s stress:

E =
1∑

i<j d
∗
ij

∑
i<j

(d∗ij − dij)
2

d∗ij
, (1)

where variable d∗ij denotes the distance between i-th and j-
th objects in the original space, while dij is the distance be-
tween their projections. The minimization of Equation 1 is
a rather complex problem that cannot be solved in closed-
form. Therefore, MDS algorithms use iterative numerical al-

2



gorithms to find a matrix that minimizes the stress function.
Our implementation uses the SMACOF algorithm [5], which
is based on iterative majorization.
Although Sammon’s projection can unfold data belonging to
manifolds of high-dimension, once large distances are taken
into account in the optimization, it can fail for highly twisted
spaces. As a result we see very similar cases projected far
apart. A serious problem of Sammon’s projection is also its
relatively high computational complexity O(n2).

Document stream visualization. The method presented
in [3] is a pipeline of different data mining techniques aimed
at better mapping of higher-dimensional data onto a 2D can-
vas. First, the algorithm clusters examples in order to seg-
ment the data space. Using the k-means clustering method
several (usually 100) centroids are obtained. These centroids
are used as control points in the final stage of the visualization
pipeline. Second, these representative instances are projected
onto a planar canvas by using an iterative stress majorization
method. Simultaneously, determining nearest neighbours for
every point is required. Cosine similarity is used for computa-
tion of distances between examples. Finally, the least-squares
solver is used to interpolate non-control points between the
coordinates of control points. The basic idea how to construct
the system of linear equations required by the interpolation
process is that each (control or non-control) point can be de-
scribed as the center of its nearest neighbors. The result of
the solver is a n-dimensional vector which contains pairs of
coordinates for every example.

Visualization tools. Vd-chuck’s visualizations provide the
user with different tools for easier interpretation of the visual-
ized concept. Every instance can be selected by simply click-
ing on it (note that multiple area selection is possible too).
Selected examples are listed on the right of the visualization
window.
The ‘Highlight selected on similarity graph’ is used to check
the similarity of all of the selected examples on the visualized
concept’s similarity graph. This is mostly useful for outlier
detection and rearranging examples to other possibly more
suited concepts. The ‘Compare selected examples with con-
cept’s centroid’ function gives the user a possibility to check
how selected examples compare to the concept’s average val-
ues, while the ‘Calculate most influential attributes for se-
lected examples’ provides the user a list of attributes that best
differentiate the selected examples against other examples of
the visualized concept. The most influential attributes are ob-
tained with the Relief measure.

3 COMPARISON WITH ONTOGEN

Vd-chuck was inspired by the desktop topic ontology editor
Ontogen. In this section we provide a direct comparison be-
tween the two. The comparison is carried out according to
four characteristics: browser-base, handling of numerical and
textual data, active learning and visualization techniques.

Browser-based. As opposed to Ontogen, the Vd-chuck sys-
tem is browser-based, so it can be accessed from anywhere.
It does not need preinstalled software except for the web-
browser. It is always up-to-date, so there is no need for local
version upgrades. It is also possible to access it from mo-
bile phones and tablets. Unlike in Ontogen, the user is not
required to save and transfer files locally. Consequently, it
enables easier collaboration as users can share their projects
by simply sharing a link of the Vd-chuck’s project web page.

Handling numerical or textual data. Vd-chuck offers tax-
onomy construction on either numerical or textual data, while
Ontogen can deal only with textual data. When loading tex-
tual data in Vd-chuck, some basic text preprocessing (such as
lemmatization and stop-word removal) and a TF-IDF trans-
formation of all documents is done. TF-IDF features are then
used in clustering and visualization algorithms.

Active learning. Vd-chuck system does not provide the su-
pervised SVM active learning method [1] present in Ontogen.
The user is therefore required to manually move each example
that in his opinion does not suit the selected concept. When
much example moving is required the absence of active learn-
ing can slow down the taxonomy construction process.

Visualization. Vd-chuck offers two visualization tech-
niques: MDS and the document stream visualization. In con-
trast with Ontogen’s, Vd-chuck’s visualizations provide back-
ground colouring of examples according to their belonging
concept. Meanwhile, Ontogen provides an option of map-
ping document keyword onto the 2D space. Furthermore, the
density of documents in an area is used for generating the
background relief in Ontogen.

4 TYPICAL VD-CHUCK USE-CASE
In this section we describe a real-life use case of Vd-chuck.
We show how to build a topic ontology from textual data, in
order to do so we repeated the experiment described in [10].
Construction of a topic ontology of a corpus of 79 English-
written documents taken from Language technologies confer-
ences, held in Ljubljana from 1998 to 2010, was performed.
All documents were previously preprocessed—data transfor-
mations such as discarding authors’ names, institutions, ref-
erences, footnotes and page numbers were performed.
We used Vd-chuck’s concept suggestion tool for every con-
cept with different k values for the k-means clustering algo-
rithm. The used k value was the one which splits the data to
most sensible big-enough clusters, confirming the user’s un-
derstanding of the area with its keywords. If a concept could
not be split into reasonable subconcepts further concept divi-
sion was not performed.
We decided to use a top-down approach of taxonomy gen-
eration. We started by dividing the root concept into two
subconcepts. The Vd-chuck’s suggested concepts’ extracted
keywords were very consistent with the general division of
the field of language technologies which consists of computa-
tional linguistics and speech technology. Some additional hu-

3



Figure 3: Taxonomy of documents from Language technolo-
gies documents before manual concept renaming. Concept
names consist of most representative keywords.

man effort was also needed—some examples had to be moved
to more suitable concepts.
Next, concepts of computational linguistics and speech tech-
nology where further divided. Again k-means suggestion tool
was used. Inside the computational linguistics concept a gen-
eral cluster (described by keywords such as ‘serbian’) was
continually present. All examples from this cluster were man-
ually moved according to user’s knowledge and presentation
of what other concepts are representing. After the sorting
we could easily identify some other outliers using Vd-chuck’s
concept similarity graph.

Figure 4: Updated taxonomy after manual moving of exam-
ples and concepts renaming.

Lastly, we renamed concepts in order to get a more compre-
hensible ontology. The result of our taxonomy generation can
be seen in Figure 4. For the validation of a logical division, we
checked the concepts’ centroid similarity graphs. The results
consistently showed that the examples in the concept were
always very similar to the concept’s centroid, while other ex-
amples were much further apart.
The presented topic ontology construction resulted in a sim-
ilar topic ontology as described in [10]. The differences that
we encounter, such as additional division of concept ‘Speech
recognition and translation’, were mostly due to subjective
judgment of the user.

5 CONCLUSION
This paper presented Vd-chuck, a browser-based semi-
automatic taxonomy construction tool. We have provided
a detailed comparison with the desktop ontology editor On-
togen. We have tested the Vd-chuck system on a real-life
domain. The results show that with our system similar tax-

onomies as with other taxonomy editors can be constructed.
The system is easy to use, although the lack of active learn-
ing makes taxonomy construction more time-consuming for
the user. For further work we plan to construct more repre-
sentative visualization, especially when dealing with smaller
databases. Furthermore, work on adding active learning is
planned.

References
[1] B. Fortuna, M. Grobelnik, and D. Mladenić. Ontogen:

Semi-automatic ontology editor. Procedings of Human
Interface and the Management of Information. Inter-
acting in Information Environments Conference, pages
309–318, 2007.

[2] J.H. Gennari, M.A. Musen, and R.W. Fergerson. The
evolution of protégé: an environment for knowledge-
based systems development. International Journal of
Human-Computer Studies, 58(1):89–123, 2003.

[3] M. Grčar, V. Podpečan, M. Juršič, and N. Lavrač. Ef-
ficient visualization of document streams. In Proceed-
ings of Discovery Science Conference, pages 174–188.
Springer, 2010.

[4] Z. He, X. Xu, and S. Deng. Discovering cluster-based
local outliers. Pattern Recognition Letters, 24(9):1641–
1650, 2003.

[5] W.J. Heiser and I. Stoop. Explicit smacof algorithms for
individual differences scaling. Technical report, PROX-
SCAL Progress Report, 1986.

[6] J.B. Kruskal. Multidimensional scaling by optimizing
goodness of fit to a nonmetric hypothesis. Psychome-
trika, 29(1):1–27, 1964.

[7] J.R. Quinlan. Induction of decision trees. Machine
learning, 1(1):81–106, 1986.

[8] G. Salton and C. Buckley. Term-weighting approaches
in automatic text retrieval. Information processing &
management, 24(5):513–523, 1988.

[9] J.W. Sammon Jr. A nonlinear mapping for data structure
analysis. IEEE Transactions on computers, 100(5):401–
409, 1969.

[10] J. Smailović and S. Pollak. Semi-automated construc-
tion of a topic ontology from research papers in the
domain of language technologies. In Proceedings of
5th Language & Technology Conference, Poznan, pages
121–125, 2011.

[11] M. Steinbach, G. Karypis, V. Kumar, et al. A compari-
son of document clustering techniques. In Proceedings
of KDD Workshop on Text Mining Conference, 2000.

[12] T. Tudorache, J. Vendetti, and N.F. Noy. Web-protege:
A lightweight owl ontology editor for the web. 5th OWL
Experiences and Directions Workshop, 2008.

[13] M. Weiten. Ontostudioas a ontology engineering envi-
ronment. Semantic Knowledge Management, pages 51–
60, 2009.

4


