
 

 

SEARCHING FOR INFORMATION IN SOFTWARE 
DEVELOPMENT PROJECTS USING THE ALERT SYSTEM 

 
Luka Stopar, Gregor Leban 

Artificial Intelligence Laboratory 
Jozef Stefan Institute 

Jamova 39, 1000 Ljubljana, Slovenia 
Tel: +386 1 477-53-61 

e-mail: luka.stopar@ijs.si, gregor.leban@ijs.si 
 

 
ABSTRACT 

 

Large open source projects use several communication 
channels to exchange information. Examples of these 
channels are bug tracking systems (BTS), source code 
management systems, mailing lists, forums and wikis. 
Since these information sources use different platforms 
there is no system which would allow users of these 
communication channels to find information appearing 
on any of these sources. Developing a system that will 
support such search functionality is the main goal of a 
European project called ALERT. In this paper we will 
introduce the project and describe the search features 
that can be used by the users of the ALERT system and 
highlight the advantages that they bring. 
 

 
1  INTRODUCTION 
Large open source projects commonly have their developers 
and users located all over the world. In order to exchange 
information such as questions, comments, requests and bugs 
reports, several information sources are employed. Each of 
these sources serves a particular purpose. Issue tracking 
systems such as Bugzilla[1], Mantis[2] and LaunchPad[3] 
are commonly used for reporting problems and feature 
requests. Mailing lists and forums allow users of the 
software to participate in open discussions about various 
topics related to the developed software. Wikis are often 
used as platforms for providing user support in the form of 
software documentation, user guides and tutorials. Source 
code management systems are used by software developers 
to commit modifications to source code and to describe the 
introduced changes. 
Due to various information sources, a common problem 
affecting these communities is finding information. In order 
to find an answer to a question, the user has to open a 
separate web page for each of these sources and use different 
search interfaces to find information of interest. Because 
there is no integrated way of finding information, duplicates 
of the same questions can be found on different information 
sources. Display of search results is also quite limited. 
Results are only displayed as a list, frequently with a text 
snippet that matches the query. There is not additional 

summary of results that would allow discovery of useful and 
unexpected patterns. 
Empowering the users by providing the missing 
functionalities of the current systems is the goal of the 
European project ALERT[4]. More specifically, ALERT 
system, which will be developed as the result of the project, 
aims to: 
 Provide functionality to integrate information from 

issue tracking systems, source code management 
systems, forums, mailing lists and wikis. 

 Extract information from structured (meta-data, source 
code commits) and unstructured sources (all text 
generated by users) and store it in a knowledge base 

 Provide advanced search capabilities across all 
communication sources. 

 Provide automatic methods for otherwise time 
consuming tasks such as finding bug duplicates and 
suggesting developers, who can fix an issue. 

 Provide subscription mechanisms that allow users to 
specify their interests in order to be notified when 
something relevant is posted in some information 
source.  

In this paper we will focus only on the ALERT’s 
functionality related to search over all information sources. 
In the next section we will start by introduction the structure 
of the ALERT system. We will describe all main 
components of the system and the data flow. Then we will 
describe the search service and the visualization service – 
two main components responsible for enabling the user to 
find relevant information. Additionally we will also briefly 
describe more advanced search options such as finding 
potential bug duplicates and recommending developers who 
can fix an issue. 
 
2 ALERT SYSTEM ARCHITECTURE 
The ALERT system consists of several components, where 
each component is responsible for a particular task. The 
overview of the architecture is shown in Figure 1.  
At the top of the figure we have a set of sensors that are 
responsible for detecting when new information is published 
in the information sources used by the community. 
Whenever new information is posted in these sources, the 



 

sensors pass it forward to the components that are 
responsible for processing it.  
Component “Knowledge extraction from structured sources” 
is able to process information on source code changes, such 
as what classes and methods were added or modified in a 
particular source code commit. The extracted information is 
then pushed to the Knowledge base where it can be accessed 
by other components.  
The information generated in communication channels is 
mostly unstructured – it is plain text generated by the users. 
This type of data is processed by the component 
“Knowledge extraction from unstructured sources”. One of 
the main tasks of the component is to annotate the text using 
the Annotation ontology [5]. The ontology contains relevant 
terminology for computer science and allows us to 
semantically enrich the text. The information extracted by 
the component is again stored in the Knowledge base. 
After the data is stored in the Knowledge base it is ready to 
be consumed by other components. There are three main 
components that use the stored information to provide 
certain functionality for the user of the ALERT system. The 
Event detector enables the user to have control over what 
information he receives from the communication channels. 
The user can, for example, specify a set of topics he is 
interested in and as a result he will only be notified when 
posts on those topics are published in the communication 
channels. 

The Recommendation service is responsible for 
recommending developers to fix an issue. Based on the 
activity of developers the service computes for each 
developer a set of scores that represents his/her expertise in 
different software development areas. When a new issue is 
created it can analyze what the issue is about (using the 
annotations from Annotation ontology) and identify the most 
appropriate developers to fix the issue.  
The Search/Visualization service is responsible for 
providing to the user an integrated environment where he 
can search for information stored in the ALERT system. The 
details of the search service are described in the next section. 
  
3 SEARCH SERVICE  
The search interface provides the ability to search for 
information across all information sources. A screenshot of 
the interface is shown in Figure 2. 
The top part of the interface contains a tab control offering 
four conceptually different search options. The first option is 
the general search. In the first text box it allows the user to 
enter plain search keywords. The second text box allows 
restricting the results based on the structured information 
available for the posts. When entering the text, the user is 
presented with a list of possibilities for the given text prefix.  
The possibilities are of the following types: 
 People names. By specifying a person, the search results 

will be limited to posts where the person is the sender or 
recipient of the post. 

 

Figure 1. Architecture of the ALERT system. 



 

 Source code. By monitoring the source code 
management system we are aware of all the files, 
classes and methods developed in the project. By 
specifying the name of the file, class or method we can 
therefore limit the results to those posts that contain a 
reference to them.  

 Project/component name. All issues on a bug tracking 
system are assigned to a particular product and 
component. By specifying a project or component we 
can limit results to a particular subset of issues. 

The user can also specify a time constraint on the results by 
specifying a starting and ending date. Posts outside of the 
specified time window won’t be considered in the query 
results. Additional constraint can also be the type of the 
posts. If the user would wish to ignore posts from a 
particular information source he can simply uncheck the 
appropriate checkbox.  
Along with the general search, the user can also search for 
possible issue duplicates. On issue tracking systems the 

users often create duplicated reports of the same issue. 
Before starting to work on fixing the issue, a bug triager has 
to first determine if the issue is duplicate or not. Using our 
interface the bug triager can enter the id of the issue and the 
system will provide him with a list of most similar existing 
issues. For each existing issue the system even provides a 
score of the similarity. The similarity between issues is 
determined using an algorithm that takes into account the 
available meta information about the issue and the cosine 
similarity measure computed on the available text of the 
issue [6].  
The third search option is to find issues related to my code. 
There are two crucial sources that ALERT has to monitor in 
order to support this functionality; the issue tracking system 
and the source code management system (SCMS). By 
monitoring SCMS we know for each developer which are 
the methods that he modified. By annotating the issues we 
also detect references to methods in the text. These 
references most often occur in stack traces that are provided 

 

Figure 2. The search interface provided by the ALERT system 



 

with the issue. By combining information from both sources 
we can suggest to the developer the issues that are possibly 
caused by his code. 
The last search option is suggesting issues that a developer 
could solve. Although it seems similar to the previous one it 
is functionally different. In this case the user specifies the 
name of a developer. For each developer the ALERT system 
maintains an expertise profile that is created based on the 
topics that are mentioned in the posts created by the user. If 
the developer is, for example, in his posts frequently writing 
about Bluetooth, then he would be in a sense considered as 
an expert on this topic. The ALERT system can use the 
person’s profile and match it to the existing open issues. 
Issues that are the best match are displayed to the developer 
and he can choose which ones he would like to fix.  
 
4 VISUALIZATION SERVICE 
After the user chooses the appropriate search option and 
specifies the search conditions, the search results are 
presented and summarized in different ways based on 
research done in [7]. 
The most ordinary display of the results is in a list. In Figure 
2, this list is displayed in the middle left part. For each post 
in the list we show the author of the post, date, subject and a 
short content snippet. Clicking an item in the list shows its 
full content in the right part (Item details). If the clicked post 
is a part of a threaded message (such as an issue or 
email/forum discussion) the whole thread is displayed. The 
searched keywords are automatically highlighted in the text 
in order to more easily identify the information of interest. 
Depending on the post type, the item details tab also offers 
additional functionality. For issues, the user can also see a 
list of all posts that mention the issue and a list of most 
suitable developers to fix the issue. For source code 
commits, the shown information also contains a tree of files, 
classes and methods that were modified by the selected 
commit. 
Together with the list of results, ALERT also provides three 
visualizations containing a summary of the search results. 
The first visualization is a timeline view and is displayed 
below the search results. It shows the distribution of search 
results over time. Using this visualization a user can spot 
times with high or low activity. Such patterns can be very 
helpful for gaining important insights. From our query in 
Figure 2 we can see that Dario Freddi was very active in 
December 2009 and then didn’t participate again until 
December next year. When searching issues on a particular 
topic a spike on the timeline could identify when a bug was 
introduced in the code. 
The second visualization is the social graph. By displaying a 
graph of people who are involved in the query results it 
shows a summary from the social perspective. There is a 
connection between two people in the graph if one is 
responding to the others post (for example, one person sends 

an email to the other). The size of the person’s label depends 
on the number of times the person appears in the results. 
This visualization makes it easy to identify who are the most 
active/knowledgeable people on a particular topic. This 
information can be helpful if one would like find an expert 
on a particular topic in order to contact him directly. 
The last visualization offered by the interface is the tag 
cloud. It offers a summary in a form of most relevant terms 
extracted from the results. The visualization can be helpful 
in different ways, depending on the entered search 
conditions. If a person is specified as a condition then the tag 
cloud can indicate what is the person’s expertise or area of 
interest. In case the search is done using some keywords 
then the cloud can identify related topics that can be used to 
refine the query.  
 
5 CONCLUSION 
In this paper we presented an overview of the search 
functionality that is offered by the ALERT system. The 
system integrates information coming from several 
information sources – bug tracking systems, source code 
management systems, forums, mailing lists and wikis. We 
briefly described the architecture of the system and the way 
in which the information travels through individual 
components of the system. We described the search interface 
and the different search functionalities supported by the 
system. We also presented details of the visualization 
service which is responsible for displaying the results of the 
search queries. The service also provides different 
summaries of the results which enable the users to gain 
additional insights that would be otherwise hard to obtain. 
 
6 ACKNOWLEDGMENTS 
This work was supported by the Slovenian Research 
Agency, European Social Fund and ALERT (ICT-249119-
STREP). 
 
References 
[1] “Bugzilla,” 2011. Available: http://www.bugzilla.org/. 
[2] “Mantis,” 2011. Available: http://www.mantisbt.org/. 
[3] “LaunchPad,” 2011. Available: https://launchpad.net/. 
[4] “ALERT,” 2011. Available: http://www.alert-project.eu/. 
[5] G. Leban, L. Dali, I. Novalija, "Enabling semantic 

search in open source communities," European Semantic 
Web Conference, Crete, 2012. 

[6] G. Leban, “Analysis and prediction of bug duplicates in 
KDE bug tracking system,” Information Society 2011, 
Slovenia, pp. 133-136.. 

[7] G. Leban and M. Grobelnik, “Displaying email-related 
contextual information using Contextify,” International 
Semantic Web Conference, Shanghai, China, 2010, pp. 
181-184. 

 
 
 


