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ABSTRACT

We review three algorithms for parameter estimation
of the Latent Dirichlet Allocation model: batch varia-
tional Bayesian inference, online variational Bayesian

inference and inference using collapsed Gibbs sampling.

We experimentally compare their time complexity and
performance. We find that the online variational Bay-
esian inference converges faster than the other two in-
ference techniques, with comparable quality of the re-
sults.

1 INTRODUCTION

Probabilistic graphical models such as Latent Dirichlet
Allocation (LDA) allow us to describe textual documents
as a distribution over topics, where the topics are repre-
sented as distributions over words. Given a collection
of documents, the task of LDA parameter estimation is
to find the most likely per-document topic distributions
and the most likely topic distributions. The task is based
on computing the LDA posterior distribution, which is
known to be intractable, but can be tackled by using ap-
proximate inference methods.

Modern approximate posterior inference algorithms fall
into two categories: sampling approaches and optimiza-
tion approaches. The sampling approaches are usually
based on Markov Chain Monte Carlo (MCMC) sampling.
The conceptual idea of these methods is to generate inde-
pendent samples from the posterior and then reason about
the documents and topics. The second category of ap-
proaches are the optimization approaches, usually based
on variational inference, also called the Variational Bay-
esian (VB) methods. These methods optimize the close-
ness (based on the Kullback-Leibler divergence) of the
posterior to a simplified parametric distribution.

In this paper, we compare one MCMC and two VB al-
gorithms for approximating the posterior distribution. In
the subsequent sections we formally introduce the LDA
model and review the inference algorithms. We study
the performance of algorithms and make comparisons be-
tween them. We use articles from Wikipedia to infer and
evaluate the models. We show that Online Variational
Bayesian inference is the fastest algorithm. However the

accuracy is lower than in the other two, but the results are
still good enough for practical use.

2 LDA MODEL

Latent Dirichlet Allocation [1] is a Bayesian probabilistic
graphical model, which is regularly used in topic mod-
eling. It assumes M documents are built in the follow-
ing fashion. First, a collection of K topics (distributions
over words) are drawn from a Dirichlet distribution, ¢ ~
Dirichlet(f). Then for m-th document, we:

1. Choose a topic distribution 6, ~ Dirichlet(c).
2. For each word w,, , in m-th document:
i. choose a topic of the word
Zmn ~ Multinomial(6,,),
ii. choose a word wy, , ~ Multinomial(¢,, ).

LDA can be graphically represented using plate notation
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FIGURE 1. Plate notation of LDA.

The total probability of the LDA model is:
p(w7z797(p | a’B) =
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We can analyze a corpus of documents by computing the
posterior distribution of the hidden variables (z, 0, ¢) given
a document (w). This posterior reveals the latent structure



in the corpus that can be used for prediction or data ex-
ploration. Unfortunately, this distribution cannot be com-
puted directly [1], and is usually approximated using Mar-
kov Chain Monte Carlo (MCMC) methods or variational
inference.

3 ALGORITHMS

In the following subsections, we will derive one MCMC
algorithm and two variational Bayes algorithms for the
approximation of the posterior inference.

3.1 Collapsed Gibbs sampling

In the collapsed Gibbs sampling we first integrate 8 and
¢ out.

pawl o p)= [ [ piew.0.0]0p)dddp

The goal of collapsed Gibbs sampling here is to approxi-
mate the distribution p(z | w, o, 8). The conditional prob-
ability p(w | a, ) does not depend on z, therefore Gibbs
sampling equations can be derived from p(z,w | o, §) di-
rectly. Specifically, we are interested in the following con-
ditional probability:

P(Zm,n | Z—\(m7n)7w7 a, ﬁ)7

where z_,, ,) denotes all z-s but z,,,. And furthermore
we assume that the omitted word is the v word in the
vocabulary of size V. Note that for collapsed Gibbs sam-
pling we need only to sample a value for z,, , according to
the above probability. Thus we only need the probability
mass function up to scalar multiplication. Moreover we
simplify the model by taking oy = &, B = B for all k.
The distribution can be simplified [4, page 22] as:
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where n refers to the number of times that term v has

been observed with topic %, nﬁ,’f) refers to the number of
times that topic k has been observed with a word of docu-

ment m, and n(l (mn) indicate that the n-th token in m-th
v) (k)

document is excluded from the corresponding n; * or np,”.
The topics and document topic mixtures can be obtained
by [4, page 23]:
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In collapsed Gibbs sampling algorithm, we need to re-

)

. k
member values of three variables: z,, ,, nﬁ,,), and n; ', and
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some sums of these variables for efficiency. The algo-
rithm first initializes z and computes n,(,l,( ), n,((v) according
to the initialized values. Then in each iteration, the algo-
rithm makes a pass over all the words in all the documents,
samples values of z,, , according to Equation (1), and re-
computes n%c) and n,(cv). Then one has to decide when the
Markov chain has converged and which initial samples to

discard (“burn in” process).

3.2 Variational Bayesian inference

This algorithm was proposed in the original LDA paper [1].
In Variational Bayesian inference (VB) the true posterior

is approximated by a simpler distribution ¢(z, 6, ¢ ), which

is indexed by a set of free parameters [6]. The simplified

distribution is illustrated using plate notation in Figure 2.

We choose a fully factorized distribution g of the form:

C](Zm,n = k) = Ym,nk;
q(em) = DiriChlet(em | ,}/m)’
q(@x) = Dirichlet(ey | A).

The posterior is parameterized by v, y and A. We refer to
A as corpus topics and ¥ as documents topics.
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FIGURE 2. Plate notation of parame-
terized distribution q.

The parameters are optimized to maximize the Evidence
Lower Bound (ELBO):

() logp(w|a.B)>ZL(w,y,7,4)
= Eq[logp(w,z, 97(p | avﬁ)] _Eq[logq(za07q))]'

Maximizing the ELBO is equivalent to minimizing the
Kullback-Leibler divergence between ¢(z,0,¢) and the
posterior p(z,0,¢ | w,a,f3).

ELBO .Z can be optimized using coordinate ascent over
the variational parameters (detailed derivation in [1, 2]):

3) Yin,vk °< €Xp {]Eq [log em,k} + ]Eq [10g (Pk,v} } )
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where ny,, is the number of terms v in document m. The
expectations are

Eqy[log 0y ] =¥ (Yimi) —¥ (Z'f:] Ym‘;) ;
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where W denotes the digamma function (the first deriva-
tive of the logarithm of the gamma function).

The updates of the variational parameters are guaranteed
to converge to a stationary point of the ELBO. We can
make some parallels with Expectation-Maximization (EM)
algorithm [3]. Iterative updates of y and y until conver-
gence, holding A fixed, can be seen as the “E”-step, and
updates of A, given ¥ and y, can be seen as the “M”-step.

The VB inference algorithm first initializes A randomly.
Then for each documents it does the “E”-step: initializes
Y randomly and then until y converges does the coordinate
ascent using Equations (3) and (4). After y converges,
the algorithm performs the “M”-step: sets A using Equa-
tion (4). Each combination “E” and “M”-step improves
ELBO. VB inference finishes after relative improvement
of .Z is less than a pre-prescribed limit or after we reach
maximum number of iterations. We define an iteration
as “E” + “M”-step. After the algorithm converges, the
parameters Y represent document topics and A represents
corpus topics.

3.3 Online Variational Bayesian inference

The previously described algorithm has constant memory
requirements. It requires a full pass through the entire cor-
pus on each iteration. Therefore, it is not naturally suited
to the online setting. We now present a variant of the al-
gorithm that is more suitable in this case.

The first step is to factorize the ELBO (Equation (2)) into:
ZL(wW, ¥, 7,4) =
Yo {Eqllog p(Win | O 2, @)] + By [log p(2,n | 6,1)]
—Ey[logg(zm)] + Ey[log p(0y | @)] — Ey[log g ()]

+ (Eyllogp( | B)] —Eqllogg()]) /M } .

Note that we bring the per corpus topics terms into the
summation over documents, and divide them by the num-
ber of documents M. This allows us to look at the max-
imization of the ELBO according to the parameters y
and ¥ for each document individually. Therefore, we first
maximize ELBO according to the ¥ and ¥ as in the batch
algorithm with A fixed. Then fix y and y and maximize
the ELBO over A, as we will now describe. Let y(wy,,A)
and y(wy,, A1) be the values of };, and y;,, produced by the
“E”-step. Our goal is to find A that maximizes

f(w,l) = Z%:l o (Wma}/(wm’l)>W(wm72’)’l)a

where £, (Wm, Y(Wm,A), ¥(Wm,A),4) is the m-th docu-
ment’s contribution to ELBO.

Then we compute A, the setting of A that would be opti-
mal with given y if our entire corpus consisted of a single
document w,, repeated M times:

Afk,v = B +]wnm,vlllm,v,k-

Here M is the number of available documents, the size of
the corpus. Then we update A using a convex combination
of its previous value and A: A = (1 — p,)A + piuA, where
the weight is defined as p, := (7o +m) . The parameters
k and Ty have the following interpretation: 7o > 0 slows
down the early iterations of the algorithm and k € (0.5, 1]
controls the rate at which old values A are forgotten. This
choice of parameters is essential to ensure convergence,
see [5, Subsection 2.3].

To sum up, the algorithm first initializes A randomly. Then,
given a document, it performs the “E”-step as in Varia-
tional Bayesian inference. Next it updates A as discussed
above. Finally it moves on to the new document and re-
peats the process. The algorithm terminates after all docu-
ments have been processed. Online Variational Bayesian
inference (Online VB) was proposed by Hofffman, Blei
and Bach in [5].

4 EXPERIMENTS

We ran several experiments to evaluate algorithms of the
LDA model. Our purpose was to compare the time com-
plexity and performance of previously described algori-
thms. For training and testing corpora we used Wikipedia.

Effectiveness was measured by using perplexity on held-
out data, which is defined as

%:] log p(Wm | 1) }
=t Non 7
where N,, denotes number of words in m-th document.
Since we cannot directly compute log p(wp, | 1), we use
ELBO as approximation:
perplexity (Weest, A)
< exp{— X (Eq[10g p(Win, Zm, 6 | 9)]

— E4[logq(zm, O | (P)D/):%:le}-
We tested three algorithms and ran experiments with vary-
ing sizes of training sets: 10,000, 20,000, ..., 80,000.
Later we evaluated perplexity on 100 held-out documents.
Size of vocabulary was approximately 150,000 words.

perplexity(Weest, ) = exp {—

In all experiments components of & and 3 were set to 0.01
and the number of topics K was set to 100. Collapsed
Gibbs sampling exhibited problems with convergence of
the model parameters: the relative change in z variable



was never dropped bellow 20% in 1000 iterations. In VB
inference, the “E”-step and the “M”-step converge if rela-
tive change in ¥ is under 0.001 and relative improvement
of the ELBO is under 0.001, respectively. In the Online
VB, the convergence of “E” step is determined the same
way is in the batch VB inference. Batchsize was 100 doc-
uments, Top was 1024 and x was equal to 0.7 as proposed
in [5].

— Gibbs
— VB
— Online VB

141 VB

12}

10r

2t Online VB

o owmew

10000 20000 30000 40000 50000 60000 70000 80000

FIGURE 3. Time used by the algo-
rithms (in hours) given the number of
the documents.
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FIGURE 4. Perplexity on held-out doc-
uments as a function of number of doc-
uments analyzed.

The fastest algorithm is Online VB (see Figure 3), batch
VB has a higher time complexity, while Gibbs sampling
algorithm did not fully converge.

We would like to compare our results to [5]. So we choose
the perplexity on held-out data as the model fit. When
measuring the perplexity on held-out data (lower perplex-

ity corresponds to a “better” model) we observed two things:

the perplexity slightly increased as the training set size
increased in case of batch VB and collapsed Gibbs sam-
pling, while it dramatically increased for the Online VB
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method (see Figure 4). The results are unexpected: in-
creasing the training set size from 10,000 to 98,000 for
the batch VB (Figure 2 in [5]) decreased the perplexity,
whereas an increase was observed in our experiments. The
behaviour of online VB is drastically different than the
one reported in [5]. Note however, that we only com-
puted an upper bound on the perplexity, since computing
it exactly is not tractable. This means that the particu-
lar method of evaluation gives us very little information
on the performance of Online VB. The quality of the top-
ics learned by Online VB was estimated as good based on
visual inspection, which could be evidence of the perplex-
ity bound being loose or some instability in computation.
The other reason for the different behaviour of the per-
plexity bound when comparing our work and [5] might
lie in the big difference between the vocabulary sizes:
150,000 in our study vs 4,253. Our future goal is to gain
a further insight into this issue.

Based on the experiments, the authors recommend using
the online VB algorithm for large corpora with large sizes
of vocabularies, since scalability becomes an important
factor.
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