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ABSTRACT 
We present an efficient approach for clustering a massive stream 
of textual documents, with particular emphasis on parallelization 
by the means of multithreaded processing. The underlying 
clustering algorithm is adaptable to changes in the stream and 
includes the ability to split and merge clusters, as well as to 
discard old data. 

1 INTRODUCTION 
Streams of textual documents occur naturally in various 
domains, such as from news sources (e.g. Spinn3r, IJS 
Newsfeed [4]) and social media (e.g. blogs, twitter, etc.). 
Clustering is the task of arranging such documents into 
groups based on some perceived notion of similarity, and is 
often an important building block of applications. The 
output of the clustering process can be seen as representing a 
“higher-level” view of the underlying data stream and is 
then the basis for further processing. 

The fact that data comes from a stream adds a few 
specific requirements to the clustering task. In particular, the 
clustering algorithm must allow the partition of documents 
into clusters to be built and updated incrementally as new 
documents appear in the stream; it cannot make multiple 
passes through the entire stream, as there is only enough 
storage space for documents from a relatively limited time-
based window. Additionally, we assume that the contents of 
the stream may change over time and the set of clusters 
should gradually be able to adapt to that, allowing the 
introduction of new clusters and the splitting/merging of 
existing clusters. 

The most important consideration for a stream-based 
clustering algorithm, however, is that it must on average be 
able to process at least as many documents per unit of time 
as there are new documents coming from the stream in the 
same unit of time, otherwise it won’t be able to keep up with 
the incoming data. If at some point the volume of incoming 
data grows high enough, parallelism will need to be 
employed. In the present paper, we focus on the scenario 
where the rate of incoming data is high enough that 
parallelism is necessary, but not so high that it would be 
necessary to distribute the processing over multiple 
computers. Thus, our aim is to present an efficient multi-
threaded clustering approach that runs on a single computer 
but makes good use of its multi-CPU and multi-core 
facilities. 

The remainder of this paper is structured as follows. In 
Section 2, we present an architectural overview of our 
clustering service.  In Section 3, we briefly describe our 
clustering approach as it would appear conceptually if its 

multi-threaded aspects were taken out of consideration; in 
Section 4 we describe the design of the multi-threaded 
version of the approach; Section 5 presents conclusions and 
discusses possible directions of future work. 

2 THE ARCHITECTURE OF OUR CLUSTERING 
SERVICE 
Our implementation runs as a web service, listening for 
HTTP requests which provide new documents that arrived 
from the source stream and now need to be added to our 
clustering-related data structures. The clustering service 
processes such requests asynchronously; it reports any 
changes in the assignment of documents to clusters by 
eventually making HTTP requests to one or more listeners, 
reporting such things as assignments of documents to 
clusters, outcomes of cluster splits/merges, and changes in 
cluster medoids. 

 
Figure 1: An architectural overview of our clustering web service. 

In addition to handling the requests for adding a new 
document into the clustering, the service also performs 
maintenance operations from time to time. This includes 
discarding old documents and clusters, as well as saving its 
data structures to disk. The service keeps all its data in main 
memory during normal operation, but saves it to disk 
periodically so that it can be restarted without much loss of 
data in case it crashes. In earlier versions of our system, 
cluster merging was also performed periodically as a 
maintenance operation, but now it’s included as a post-
processing step following each addition of a new document. 

3 THE UNDERLYING CLUSTERING ALGORITHM 
Our approach is largely based on that of Aggarwal and Wu 
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[1][2]. The main principle that we use in assigning 
documents to clusters is to simply assign each incoming 
document to the cluster whose centroid is the closest (i.e. 
most similar) to the document. (Note that the same idea is 
used by popular off-line clustering algorithms such as k-
means, except that k-means then performs multiple passes 
through the data, recalculating centroids and reassigning 
documents in each pass, which we cannot afford to do in an 
on-line setting.) For the purposes of computing centroids, 
measuring similarity etc., we use the bag-of-words 
representation (also known as the vector space model) to 
represent each document with a TF-IDF feature vector, 
normalized to unit length. After a new document is assigned 
to its nearest cluster, we consider splitting that cluster or 
merging it with another cluster. Figure 2 presents the 
pseudocode of our approach. 
Input: d – a document to be added to the clustering 
1 If d appears to be a duplicate of a document that is 
 already in the clustering, stop processing d and ignore it. 
2 Compute x, the TF-IDF vector representing d,  
 normalized to unit length. 
3 Find the cluster C whose centroid is the closest to x 
 (in terms of cosine similarity). 
4 Add d into C, updating its various aggregated statistics 
 (such as the centroid). 
5 If the splitting conditions are met, consider splitting C: 
6  Find the most promising split of C into C' and C''. 
7  If this split is better than the original C, replace C 
  with C' and C'' in our clustering data structures. 
8 Else, if the merging conditions are met, consider merging 
 C with another cluster: 
9  Find a few clusters whose centroid is closest to the 
  centroid of C, in terms of cosine distance.   
  For each such cluster C': 
10   Let C'' = C  C'. If this cluster is better than 
   keeping C and C' then  
11    Replace C and C' by C'' in our clustering data 
    structures and break. 

Figure 2: Pseudocode describing an overview of our clustering 
approach. 

Following the approach of [1], we maintain a set of 
statistics for each cluster and update them incrementally 
whenever the cluster changes. This includes the sum of the 
feature vectors of its documents, the square of this sum, per-
feature variances, and a few other statistics. Our 
implementation also supports the option of allowing 
different documents to have different weights, where the 
weight of the document decays exponentially as the 
document ages, as suggested by [1]; however, this has not 
been found to be useful in our applications, so we currently 
set all weights to 1 in practice. 

The fact that we’re dealing with an ever-changing stream 
of documents requires us to introduce a few approximations. 
For example, in principle, whenever a new document is 
added to the clustering, or an old document discarded, the 
document frequency (DF) of any term from that document 
changes; as a result, the inverse document frequencies (IDF) 
of such terms also change, and the value of their 
corresponding features change accordingly, in the TF-IDF 
vector of any document containing any such term, as well as 
in the centroid of any cluster containing any such document. 
So theoretically, the feature vectors of most documents and 

the centroids of most clusters would have to be recalculated 
whenever a document is added to or removed from our 
collection. Since the costs of such an update would be 
prohibitive, we introduce an approximation. First, instead of 
storing TF-IDF vectors of individual documents, we store 
TF vectors instead. The IDF can be applied on the fly 
whenever needed, e.g. when we wish to (re)calculate the 
centroid of a cluster. Secondly, when a document is added 
to a cluster, we only recalculate the centroid of that cluster, 
but not the centroids of other clusters; those will get 
recalculated sooner or later when some new document is 
added to them. 

To save time, a cluster is only considered for splitting 
(line 5 of the algorithm listing) if it is sufficiently large and 
if sufficiently many additions to it have been made since the 
last time it has been considered for splitting. The main idea 
during splitting is to project all members of the cluster onto 
a line and divide them into two groups depending on 
whether their projection was left or right of the projection 
of the centroid. This is repeated several times; in the first 
iteration, we project onto the principal component of the 
original cluster; in each subsequent iteration, we project 
onto the line through the centroids of the two groups from 
the previous iteration. In line 6, the best of these splits is 
chosen based on minimizing the variance; in line 7, a 
Bayesian Information Criterion is used to decide whether to 
actually accept the split.  

For merging, we similarly only consider the cluster for 
merging (in line 8) if enough additions have been made to it 
since the last time it was considered for merging. Merging 
makes sense if two clusters are similar, e.g. as measured by 
the cosine similarity of their centroids. The problem here is 
that while the feature vectors of individual documents are 
sparse (i.e. they have relatively few nonzero components), 
the centroid of a cluster is usually fairly dense. Thus, 
computing a cosine between two centroids involves a dot 
product of two dense vectors, which is time-consuming. We 
resort to an approximation again: for the purposes of step 9, 
we temporarily make the centroid of C sparse by setting all 
its components to 0, except the thousand components that 
were highest in terms of absolute value. This substantially 
preserves the direction of the vector but makes the 
computation of dot products cheaper. In line 10, we use 
Lughofer’s ellipsoid-overlap criterion [3] to decide whether 
to accept the merge; additionally, the merge is always 
accepted if the cosine between the two centroids exceeds a 
user-defined threshold. 

The duplicate-detection step in line 1 is in practice 
somewhat custom-tailored to the particular document 
stream we’ve been using in our applications so far. This 
stream collects news articles from numerous websites, 
many of which turn out to be reprints of agency articles 
with few or no modifications. We declare an article to be a 
duplicate if an existing article has the same title (modulo 
capitalization and whitespace) and a sufficiently similar TF-
vector. Such duplicate articles are simply discarded, rather 
than added into any cluster. 



 

4 MULTI-THREADED CLUSTERING 
A single-threaded, non-parallel implementation of the 
approach described in Section 3 is fairly straightforward. 
The program simply processes requests (to add a new 
document into the clustering) sequentially in an endless 
loop, finishing one request before moving on to the next 
one. Occasionally it can perform maintenance tasks (such as 
saving to disk, and discarding old clusters and documents) in 
between handling two requests. 

Following the well-known principle that optimization 
should focus on those parts of the program in which the 
largest amount of time is spent, we timed the single-threaded 
implementation while performing 106 article additions. It 
turns out that approx. 54% of the time was spent in step 3, 
calculating the cosine similarity between the new document 
and the centroids of all existing clusters; 43% of the time 
was spent in step 9, calculating the cosine similarity between 
cluster centroids; all other steps together account for the 
remaining 3% of the time. Thus, it is clear that 
parallelization needs to focus on steps 3 and 9. 

Another important consideration when designing a 
multithreaded solution involves the use of shared data 
structures. If a thread needs to modify some shared data 
structure, it requires exclusive access to it; that is, other 
threads shouldn’t be using the data structure at all while it’s 
being modified, even if they are content with read-only 
access to it. At the same time, we want to minimize the 
amount of time that threads spend waiting for some other 
thread to relinquish its exclusive lock on a shared data 
structure. 

In the algorithm from Figure 2, modifications of shared 
data structures occur in step 4 (adding a new document to a 
cluster), step 7 (performing a split) and step 11 (performing 
a merge). Another modification of shared data, which is not 
as readily obvious from that pseudocode listing, occurs 
when creating a feature vector x corresponding to the new 
document d: a shared hash table containing the document 
frequencies of all terms needs to be updated, and new words 
might need to be added into it (if d contains some words that 
have until now never been seen in our stream of documents). 
Similarly, the duplicate detection in step 1 uses a hash table 
of document titles and needs to add the new document’s title 
to it (if it didn’t turn out to be a duplicate). 

A somewhat naïve idea would be to assign each newly 
incoming document to one of several threads, and this thread 
can then execute the algorithm from Figure 2. The thread 
could somehow lock the cluster while it’s being accessed, 
but we can quickly see that this is unsatisfactory. Our 
application calls for a large number of small clusters; 
eventually there will be thousands, possibly tens of 
thousands of clusters, and we don’t want to require a thread 
to have to acquire and release tens of thousands of locks 
during step 3 or step 9.  

This sort of fine-grained locking also has other 
inconvenient aspects. It is easy to imagine a nightmare 
scenario in which one thread is trying to compute the cosine 
between the centroid of cluster C and a new document; 
another thread has already decided that it wants to insert a 

different new document into C and now wants to update its 
centroid; and yet another thread is trying to split C into two 
clusters, or merge it with some other cluster.  

If we don’t want to have to deal with cluster-level 
locking, we have to accept that no thread may modify 
clusters (which includes adding or deleting them) while 
some other thread is looping through them in step 3 (or step 
9, for that matter). Thus, while any thread is modifying the 
shared data structure (i.e. performing steps 4, 7, or 11), no 
other thread may be reading this data (i.e. performing step 3 
or 9 – but as we saw earlier, that’s where our threads will be 
spending 97% of their time). For nearly every new 
document (unless it was discarded in step 1 as a duplicate), 
we’ll eventually have to add it to a cluster (in step 4); 
before our thread can do so, it must wait for all other 
threads to reach the end of step 3 or 9, and all those threads 
must then stop and wait for our thread to finish step 4. (A 
similar consideration applies to steps 7 and 11, but those are 
performed more rarely.) Clearly this has the potential to 
lead to an undesirable amount of waiting. 

We can rewrite the pseudocode of Figure 2 in a way 
which emphasizes the alternation between stages which 
only read shared data and stages which need to modify 
shared data: 
R1. Check if d is a duplicate; split it into words and 

prepare a TF-vector, except for any new words that 
aren’t in our shared word table yet – these should be 
kept in a separate list. 

M1. If R1 found d to be a duplicate, discard it and stop. 
Otherwise, add its title to the shared hash table (for 
future duplicate detection) and add any new words it 
might have contained into the shared word table; this 
is also the time to finalize its TF vector and update the 
document frequency counts in the shared word table. 

R2. Compute the TF-IDF vector of our document d and 
find the cluster C with the nearest centroid. 

M2. Insert d into C, updating C’s centroid and other 
aggregate statistics. 

R3. Consider splitting C or merging it with other clusters, 
if appropriate. Do not modify any shared data 
structures; if the decision to split C is made, record 
what the new clusters C' and C'' would be; likewise, if 
the decision for a merge is made, record which cluster 
it would merge with and what would the resulting 
cluster be like. 

M3. Update the shared data structures to reflect the splits 
or merges decided upon in step R3. 

The key observation here is that there is no reason why 
all these steps should be performed by the same thread, as 
long as we maintain a small “context” data structure which 
helps threads keep track of the request as it passes through 
the stages. 

Note also that stage R2 basically corresponds to step 3 of 
Figure 1, while step 9 is included within R3. All the M-
stages are cheap, quick operations. Thus, in our 
multithreaded clustering implementation, we have a single 
main thread which performs the M-stages for all requests; 
the other threads are worker threads and perform R-stages. 



 

The requests pass between the main thread and the worker 
threads until they are complete, as shown on Figure 3. 

 

 
Figure 3: An overview of our multi-threaded clustering approach, 
showing the flow of requests through the system. 

Thus, each worker thread runs in an endless loop in which 
it takes a job from a queue, performs the next stage (which 
will be either R1, R2, or R3), and deposits it into a different 
queue. The main thread, on the other hand, assigns jobs and 
periodically blocks the worker threads, performs the M-
stages, and restarts them. The following is a simplified 
pseudocode of the main thread: 
1 Wait a set amount of time (e.g. 1 second).  
2 Set a flag which tells the worker threads to stop after they 
 finish their current job.  Wait for all the worker threads  
 to finish their current job. 
3 Perform the M-stages of all the requests which are 
 currently in progress. 
4 Return to step 1. 

Thus, most of the time the main thread sleeps (step 1) and 
lets the worker threads perform the R-stages of various 
requests. Every now and then, the main thread performs a 
barrier synchronization (step 2), stopping all the workers 
after their current job is done. Thus, at step 3, all workers are 
asleep, so the main thread can modify shared data.  

Occasionally (e.g. once per hour), the main thread stops 
issuing any new R1-stage jobs to worker threads and waits 
for all partly completed requests to fully complete (i.e. all 
the way through M3). At this point, there are no partly 
completed requests in the system, so this is a good time to 
perform periodic maintenance tasks such as saving the data 
to disk. After this, normal processing can resume. 

Since step 3 performs the M-stages of all currently open 
requests in one place, it is in a good position to coordinate 
their sometimes conflicting ideas as to what should be done. 
First, it performs the M1-stages, as these cannot conflict 
with other requests. Next it performs any splits and merges 
(M3) requested by recently completed R3 stages; while 
doing so, the main thread keeps track of which clusters have 
been split or merged, and ignores split/merge requests that 
involve clusters that have been affected by a previously 
processed split/merge request. Finally, the main thread 
performs M2-stages, inserting documents into the clusters 
requested by recently completed R2 stages; if any such 
cluster has been split, the main thread checks the centroids 
of the two subclusters to see which is closer to the 

document. 
Note that this approach means that each document must 

pass through three iterations of the main thread before it is 
fully processed. Thus, if e.g. step 1 of the main thread takes 
1 second, it will take at least 3 seconds before the document 
is processed. To use an analogy from networking, we have 
achieved high bandwidth at the price of also having high 
latency. 

5 CONCLUSIONS AND FUTURE WORK 
The multithreaded clustering approach presented here 
achieves a considerable degree of parallelism, allowing it to 
fully utilize a typical present-day multi-CPU multi-core PC. 
A further form of parallelism, not mentioned above but 
present in our application, comes from the fact that our 
stream of documents is multilingual and each language is 
processed separately from the others, thus each language 
can have its own main thread and set of worker threads.  

The work presented here could be extended in several 
directions. For example, this approach could be applied to 
non-textual data with only minor modifications. The key 
idea behind our multithreaded approach is the multi-stage 
processing, concentrating all modification of shared data 
into one thread and using barrier synchronization for the 
worker threads; and there is nothing text-specific in this. 

The computation of cosine similarities (which is where 
the algorithm still spends most of its time) could be speeded 
up by the means of random projections [5] into a limited 
(and fixed) number of dimensions. In our preliminary 
experiments, projecting our feature space into 1000 random 
projections resulted in almost no distortion (in terms of 
which centroid is closest to which document). After such a 
projection, documents and centroids become fixed-length 
dense vectors, and cosines can be computed very efficiently 
by making use of the SIMD capabilities of modern 
processors (as in various numerical linear algebra libraries). 

Another possible direction for further work is to replace 
the current flat clustering with a hierarchical one. This can 
be desirable for some applications, and it would also speed 
up the assignment of documents to clusters if this is done in 
a top-down fashion instead of examining all the clusters. 

Finally, at some point the rate of incoming documents 
may well grow beyond what can be processed by a single 
computer, so it would be interesting to investigate 
clustering approaches based on distributed computing. 
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