

A HIGH-PERFORMANCE MULTITHREADED APPROACH
FOR CLUSTERING A STREAM OF DOCUMENTS

Janez Brank, Gregor Leban, Marko Grobelnik

Artificial Intelligence Laboratory
Jožef Stefan Institute

Jamova 39, 1000 Ljubljana, Slovenia
Tel: +386 1 4773778; fax: +386 1 4251038

e-mail: {janez.brank,gregor.leban,marko.grobelnik}@ijs.si

ABSTRACT
We present an efficient approach for clustering a massive stream
of textual documents, with particular emphasis on parallelization
by the means of multithreaded processing. The underlying
clustering algorithm is adaptable to changes in the stream and
includes the ability to split and merge clusters, as well as to
discard old data.

1 INTRODUCTION
Streams of textual documents occur naturally in various
domains, such as from news sources (e.g. Spinn3r, IJS
Newsfeed [4]) and social media (e.g. blogs, twitter, etc.).
Clustering is the task of arranging such documents into
groups based on some perceived notion of similarity, and is
often an important building block of applications. The
output of the clustering process can be seen as representing a
“higher-level” view of the underlying data stream and is
then the basis for further processing.

The fact that data comes from a stream adds a few
specific requirements to the clustering task. In particular, the
clustering algorithm must allow the partition of documents
into clusters to be built and updated incrementally as new
documents appear in the stream; it cannot make multiple
passes through the entire stream, as there is only enough
storage space for documents from a relatively limited time-
based window. Additionally, we assume that the contents of
the stream may change over time and the set of clusters
should gradually be able to adapt to that, allowing the
introduction of new clusters and the splitting/merging of
existing clusters.

The most important consideration for a stream-based
clustering algorithm, however, is that it must on average be
able to process at least as many documents per unit of time
as there are new documents coming from the stream in the
same unit of time, otherwise it won’t be able to keep up with
the incoming data. If at some point the volume of incoming
data grows high enough, parallelism will need to be
employed. In the present paper, we focus on the scenario
where the rate of incoming data is high enough that
parallelism is necessary, but not so high that it would be
necessary to distribute the processing over multiple
computers. Thus, our aim is to present an efficient multi-
threaded clustering approach that runs on a single computer
but makes good use of its multi-CPU and multi-core
facilities.

The remainder of this paper is structured as follows. In
Section 2, we present an architectural overview of our
clustering service. In Section 3, we briefly describe our
clustering approach as it would appear conceptually if its

multi-threaded aspects were taken out of consideration; in
Section 4 we describe the design of the multi-threaded
version of the approach; Section 5 presents conclusions and
discusses possible directions of future work.

2 THE ARCHITECTURE OF OUR CLUSTERING
SERVICE
Our implementation runs as a web service, listening for
HTTP requests which provide new documents that arrived
from the source stream and now need to be added to our
clustering-related data structures. The clustering service
processes such requests asynchronously; it reports any
changes in the assignment of documents to clusters by
eventually making HTTP requests to one or more listeners,
reporting such things as assignments of documents to
clusters, outcomes of cluster splits/merges, and changes in
cluster medoids.

Figure 1: An architectural overview of our clustering web service.

In addition to handling the requests for adding a new
document into the clustering, the service also performs
maintenance operations from time to time. This includes
discarding old documents and clusters, as well as saving its
data structures to disk. The service keeps all its data in main
memory during normal operation, but saves it to disk
periodically so that it can be restarted without much loss of
data in case it crashes. In earlier versions of our system,
cluster merging was also performed periodically as a
maintenance operation, but now it’s included as a post-
processing step following each addition of a new document.

3 THE UNDERLYING CLUSTERING ALGORITHM
Our approach is largely based on that of Aggarwal and Wu

notify
listeners

Clustering service

Find nearest
centroid,
insert into
cluster

incoming
documents

Preprocess,
tokenize

Splitting and
merging

Maintenance (delete old
content, save to disk)

[1][2]. The main principle that we use in assigning
documents to clusters is to simply assign each incoming
document to the cluster whose centroid is the closest (i.e.
most similar) to the document. (Note that the same idea is
used by popular off-line clustering algorithms such as k-
means, except that k-means then performs multiple passes
through the data, recalculating centroids and reassigning
documents in each pass, which we cannot afford to do in an
on-line setting.) For the purposes of computing centroids,
measuring similarity etc., we use the bag-of-words
representation (also known as the vector space model) to
represent each document with a TF-IDF feature vector,
normalized to unit length. After a new document is assigned
to its nearest cluster, we consider splitting that cluster or
merging it with another cluster. Figure 2 presents the
pseudocode of our approach.
Input: d – a document to be added to the clustering
1 If d appears to be a duplicate of a document that is
 already in the clustering, stop processing d and ignore it.
2 Compute x, the TF-IDF vector representing d,
 normalized to unit length.
3 Find the cluster C whose centroid is the closest to x
 (in terms of cosine similarity).
4 Add d into C, updating its various aggregated statistics
 (such as the centroid).
5 If the splitting conditions are met, consider splitting C:
6 Find the most promising split of C into C' and C''.
7 If this split is better than the original C, replace C
 with C' and C'' in our clustering data structures.
8 Else, if the merging conditions are met, consider merging
 C with another cluster:
9 Find a few clusters whose centroid is closest to the
 centroid of C, in terms of cosine distance.
 For each such cluster C':
10 Let C'' = C  C'. If this cluster is better than
 keeping C and C' then
11 Replace C and C' by C'' in our clustering data
 structures and break.

Figure 2: Pseudocode describing an overview of our clustering
approach.

Following the approach of [1], we maintain a set of
statistics for each cluster and update them incrementally
whenever the cluster changes. This includes the sum of the
feature vectors of its documents, the square of this sum, per-
feature variances, and a few other statistics. Our
implementation also supports the option of allowing
different documents to have different weights, where the
weight of the document decays exponentially as the
document ages, as suggested by [1]; however, this has not
been found to be useful in our applications, so we currently
set all weights to 1 in practice.

The fact that we’re dealing with an ever-changing stream
of documents requires us to introduce a few approximations.
For example, in principle, whenever a new document is
added to the clustering, or an old document discarded, the
document frequency (DF) of any term from that document
changes; as a result, the inverse document frequencies (IDF)
of such terms also change, and the value of their
corresponding features change accordingly, in the TF-IDF
vector of any document containing any such term, as well as
in the centroid of any cluster containing any such document.
So theoretically, the feature vectors of most documents and

the centroids of most clusters would have to be recalculated
whenever a document is added to or removed from our
collection. Since the costs of such an update would be
prohibitive, we introduce an approximation. First, instead of
storing TF-IDF vectors of individual documents, we store
TF vectors instead. The IDF can be applied on the fly
whenever needed, e.g. when we wish to (re)calculate the
centroid of a cluster. Secondly, when a document is added
to a cluster, we only recalculate the centroid of that cluster,
but not the centroids of other clusters; those will get
recalculated sooner or later when some new document is
added to them.

To save time, a cluster is only considered for splitting
(line 5 of the algorithm listing) if it is sufficiently large and
if sufficiently many additions to it have been made since the
last time it has been considered for splitting. The main idea
during splitting is to project all members of the cluster onto
a line and divide them into two groups depending on
whether their projection was left or right of the projection
of the centroid. This is repeated several times; in the first
iteration, we project onto the principal component of the
original cluster; in each subsequent iteration, we project
onto the line through the centroids of the two groups from
the previous iteration. In line 6, the best of these splits is
chosen based on minimizing the variance; in line 7, a
Bayesian Information Criterion is used to decide whether to
actually accept the split.

For merging, we similarly only consider the cluster for
merging (in line 8) if enough additions have been made to it
since the last time it was considered for merging. Merging
makes sense if two clusters are similar, e.g. as measured by
the cosine similarity of their centroids. The problem here is
that while the feature vectors of individual documents are
sparse (i.e. they have relatively few nonzero components),
the centroid of a cluster is usually fairly dense. Thus,
computing a cosine between two centroids involves a dot
product of two dense vectors, which is time-consuming. We
resort to an approximation again: for the purposes of step 9,
we temporarily make the centroid of C sparse by setting all
its components to 0, except the thousand components that
were highest in terms of absolute value. This substantially
preserves the direction of the vector but makes the
computation of dot products cheaper. In line 10, we use
Lughofer’s ellipsoid-overlap criterion [3] to decide whether
to accept the merge; additionally, the merge is always
accepted if the cosine between the two centroids exceeds a
user-defined threshold.

The duplicate-detection step in line 1 is in practice
somewhat custom-tailored to the particular document
stream we’ve been using in our applications so far. This
stream collects news articles from numerous websites,
many of which turn out to be reprints of agency articles
with few or no modifications. We declare an article to be a
duplicate if an existing article has the same title (modulo
capitalization and whitespace) and a sufficiently similar TF-
vector. Such duplicate articles are simply discarded, rather
than added into any cluster.

4 MULTI-THREADED CLUSTERING
A single-threaded, non-parallel implementation of the
approach described in Section 3 is fairly straightforward.
The program simply processes requests (to add a new
document into the clustering) sequentially in an endless
loop, finishing one request before moving on to the next
one. Occasionally it can perform maintenance tasks (such as
saving to disk, and discarding old clusters and documents) in
between handling two requests.

Following the well-known principle that optimization
should focus on those parts of the program in which the
largest amount of time is spent, we timed the single-threaded
implementation while performing 106 article additions. It
turns out that approx. 54% of the time was spent in step 3,
calculating the cosine similarity between the new document
and the centroids of all existing clusters; 43% of the time
was spent in step 9, calculating the cosine similarity between
cluster centroids; all other steps together account for the
remaining 3% of the time. Thus, it is clear that
parallelization needs to focus on steps 3 and 9.

Another important consideration when designing a
multithreaded solution involves the use of shared data
structures. If a thread needs to modify some shared data
structure, it requires exclusive access to it; that is, other
threads shouldn’t be using the data structure at all while it’s
being modified, even if they are content with read-only
access to it. At the same time, we want to minimize the
amount of time that threads spend waiting for some other
thread to relinquish its exclusive lock on a shared data
structure.

In the algorithm from Figure 2, modifications of shared
data structures occur in step 4 (adding a new document to a
cluster), step 7 (performing a split) and step 11 (performing
a merge). Another modification of shared data, which is not
as readily obvious from that pseudocode listing, occurs
when creating a feature vector x corresponding to the new
document d: a shared hash table containing the document
frequencies of all terms needs to be updated, and new words
might need to be added into it (if d contains some words that
have until now never been seen in our stream of documents).
Similarly, the duplicate detection in step 1 uses a hash table
of document titles and needs to add the new document’s title
to it (if it didn’t turn out to be a duplicate).

A somewhat naïve idea would be to assign each newly
incoming document to one of several threads, and this thread
can then execute the algorithm from Figure 2. The thread
could somehow lock the cluster while it’s being accessed,
but we can quickly see that this is unsatisfactory. Our
application calls for a large number of small clusters;
eventually there will be thousands, possibly tens of
thousands of clusters, and we don’t want to require a thread
to have to acquire and release tens of thousands of locks
during step 3 or step 9.

This sort of fine-grained locking also has other
inconvenient aspects. It is easy to imagine a nightmare
scenario in which one thread is trying to compute the cosine
between the centroid of cluster C and a new document;
another thread has already decided that it wants to insert a

different new document into C and now wants to update its
centroid; and yet another thread is trying to split C into two
clusters, or merge it with some other cluster.

If we don’t want to have to deal with cluster-level
locking, we have to accept that no thread may modify
clusters (which includes adding or deleting them) while
some other thread is looping through them in step 3 (or step
9, for that matter). Thus, while any thread is modifying the
shared data structure (i.e. performing steps 4, 7, or 11), no
other thread may be reading this data (i.e. performing step 3
or 9 – but as we saw earlier, that’s where our threads will be
spending 97% of their time). For nearly every new
document (unless it was discarded in step 1 as a duplicate),
we’ll eventually have to add it to a cluster (in step 4);
before our thread can do so, it must wait for all other
threads to reach the end of step 3 or 9, and all those threads
must then stop and wait for our thread to finish step 4. (A
similar consideration applies to steps 7 and 11, but those are
performed more rarely.) Clearly this has the potential to
lead to an undesirable amount of waiting.

We can rewrite the pseudocode of Figure 2 in a way
which emphasizes the alternation between stages which
only read shared data and stages which need to modify
shared data:
R1. Check if d is a duplicate; split it into words and

prepare a TF-vector, except for any new words that
aren’t in our shared word table yet – these should be
kept in a separate list.

M1. If R1 found d to be a duplicate, discard it and stop.
Otherwise, add its title to the shared hash table (for
future duplicate detection) and add any new words it
might have contained into the shared word table; this
is also the time to finalize its TF vector and update the
document frequency counts in the shared word table.

R2. Compute the TF-IDF vector of our document d and
find the cluster C with the nearest centroid.

M2. Insert d into C, updating C’s centroid and other
aggregate statistics.

R3. Consider splitting C or merging it with other clusters,
if appropriate. Do not modify any shared data
structures; if the decision to split C is made, record
what the new clusters C' and C'' would be; likewise, if
the decision for a merge is made, record which cluster
it would merge with and what would the resulting
cluster be like.

M3. Update the shared data structures to reflect the splits
or merges decided upon in step R3.

The key observation here is that there is no reason why
all these steps should be performed by the same thread, as
long as we maintain a small “context” data structure which
helps threads keep track of the request as it passes through
the stages.

Note also that stage R2 basically corresponds to step 3 of
Figure 1, while step 9 is included within R3. All the M-
stages are cheap, quick operations. Thus, in our
multithreaded clustering implementation, we have a single
main thread which performs the M-stages for all requests;
the other threads are worker threads and perform R-stages.

The requests pass between the main thread and the worker
threads until they are complete, as shown on Figure 3.

Figure 3: An overview of our multi-threaded clustering approach,
showing the flow of requests through the system.

Thus, each worker thread runs in an endless loop in which
it takes a job from a queue, performs the next stage (which
will be either R1, R2, or R3), and deposits it into a different
queue. The main thread, on the other hand, assigns jobs and
periodically blocks the worker threads, performs the M-
stages, and restarts them. The following is a simplified
pseudocode of the main thread:
1 Wait a set amount of time (e.g. 1 second).
2 Set a flag which tells the worker threads to stop after they
 finish their current job. Wait for all the worker threads
 to finish their current job.
3 Perform the M-stages of all the requests which are
 currently in progress.
4 Return to step 1.

Thus, most of the time the main thread sleeps (step 1) and
lets the worker threads perform the R-stages of various
requests. Every now and then, the main thread performs a
barrier synchronization (step 2), stopping all the workers
after their current job is done. Thus, at step 3, all workers are
asleep, so the main thread can modify shared data.

Occasionally (e.g. once per hour), the main thread stops
issuing any new R1-stage jobs to worker threads and waits
for all partly completed requests to fully complete (i.e. all
the way through M3). At this point, there are no partly
completed requests in the system, so this is a good time to
perform periodic maintenance tasks such as saving the data
to disk. After this, normal processing can resume.

Since step 3 performs the M-stages of all currently open
requests in one place, it is in a good position to coordinate
their sometimes conflicting ideas as to what should be done.
First, it performs the M1-stages, as these cannot conflict
with other requests. Next it performs any splits and merges
(M3) requested by recently completed R3 stages; while
doing so, the main thread keeps track of which clusters have
been split or merged, and ignores split/merge requests that
involve clusters that have been affected by a previously
processed split/merge request. Finally, the main thread
performs M2-stages, inserting documents into the clusters
requested by recently completed R2 stages; if any such
cluster has been split, the main thread checks the centroids
of the two subclusters to see which is closer to the

document.
Note that this approach means that each document must

pass through three iterations of the main thread before it is
fully processed. Thus, if e.g. step 1 of the main thread takes
1 second, it will take at least 3 seconds before the document
is processed. To use an analogy from networking, we have
achieved high bandwidth at the price of also having high
latency.

5 CONCLUSIONS AND FUTURE WORK
The multithreaded clustering approach presented here
achieves a considerable degree of parallelism, allowing it to
fully utilize a typical present-day multi-CPU multi-core PC.
A further form of parallelism, not mentioned above but
present in our application, comes from the fact that our
stream of documents is multilingual and each language is
processed separately from the others, thus each language
can have its own main thread and set of worker threads.

The work presented here could be extended in several
directions. For example, this approach could be applied to
non-textual data with only minor modifications. The key
idea behind our multithreaded approach is the multi-stage
processing, concentrating all modification of shared data
into one thread and using barrier synchronization for the
worker threads; and there is nothing text-specific in this.

The computation of cosine similarities (which is where
the algorithm still spends most of its time) could be speeded
up by the means of random projections [5] into a limited
(and fixed) number of dimensions. In our preliminary
experiments, projecting our feature space into 1000 random
projections resulted in almost no distortion (in terms of
which centroid is closest to which document). After such a
projection, documents and centroids become fixed-length
dense vectors, and cosines can be computed very efficiently
by making use of the SIMD capabilities of modern
processors (as in various numerical linear algebra libraries).

Another possible direction for further work is to replace
the current flat clustering with a hierarchical one. This can
be desirable for some applications, and it would also speed
up the assignment of documents to clusters if this is done in
a top-down fashion instead of examining all the clusters.

Finally, at some point the rate of incoming documents
may well grow beyond what can be processed by a single
computer, so it would be interesting to investigate
clustering approaches based on distributed computing.
Acknowledgments
This work was supported by the Slovenian Research Agency and the ICT
Programme of the EC under under XLike (ICT-STREP-288342).
References
[1] C. C. Aggarwal, P. S. Yu. A framework for clustering massive text

and categorical data streams. SIAM Conf. on Data Mining, 2006.
[2] C. C. Aggarwal, P. S. Yu. On clustering massive text and

categorical data streams. Knowledge and Inf. Systems, 24(2):171–
196, 2010.

[3] E. Lughofer. A dynamic split-and-merge approach for evolving
cluster models. Evolving Systems, 3(3):135–151, 2012.

[4] M. Trampuš, B. Novak. Internals of an aggregated web news feed.
Proc. SiKDD 2012.

[5] Â. Cardoso, A. Wichert. Iterative random projections for high-
dimensional data clustering. Pattern Recognition Letters,
33(12):1749–55, 2012.

Multi‐threaded clustering engine

incoming
document
queue

processed
document
queue

R‐stage
queues

M‐stage
queues

main
thread

worker
threads

