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ABSTRACT 
Fusing heterogeneous multivariate data in stream mining 
scenarios is a demanding task. Successful fusion requires a well-
thought approach. We propose the use of a stream processing 
engine (SPE) that enables implementation of all the needed 
methods and ensures almost real-time responsiveness of the 
system. 

In the paper we propose an infrastructure that is able to receive 
data from various heterogeneous sources (static properties, 
weather data and forecasts, other forecasts, and primarily sensor 
data). In the implementation of the proposed infrastructure we 
address issues related to the heterogeneous nature of the data, like 
different frequency, different update interval, and different nature 
of the data. The pipeline was used to prepare stream prediction 
models for five different energy-related use cases, which include 
public buildings, a thermal plant production, university campus 
buildings, and EPEX energy spot market prices alongside the total 
traded energy. 
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1.  INTRODUCTION 
Nature of obtaining data (wide availability, vast amounts) has 
changed the paradigm of modelling nowadays. It is fairly easy to 
measure certain phenomena with a continuous stream of 
measurements and it is even easier to add various open data to the 
set of modelling features.  

Most of the systems are working in (almost) real time, which 
favours the streaming setup for modelling and predicting. Many of 
the classical prediction methods have already been ported to the 
streaming scenario. However in our work we have tackled a 
demanding technical challenge of fusing heterogeneous 
multivariate data sources to prepare valid feature vectors for 
modelling. 

In this paper we are addressing methods for predicting energy-
related phenomena in public buildings, energy markets, and at 
energy provides.  

The paper presents an overview of potential additional data 
sources for the problem in question, showcases a suggested set of 
features for certain cases in energy related modelling, it provides 
an evaluation of different prediction methods, suggests an 
architecture for the multimodal stream modelling data fusion, and 
finally presents results from four different use cases processed 
within the platform. 

2. FEATURES AND FEATURE VECTORS 
Accuracy of prediction models is usually more dependent on the 
features used than on the modelling method chosen. Extensive 
analysis of five energy related use cases [2] has lead us to the 
following set of features with specific properties: sensor features, 
forecasts, and static properties. Table 1 depicts an example of a 
full feature vector for energy consumption modelling of the 
National Technical University of Athens (NTUA) campus 
building. 

  Table 1. Full feature set for campus building (NTUA) use 
case 

Type 
Feature 

Name UoMa Valueb Aggr. c 

Sensor current_l1 A X(0)  

 current_l2 A X(0)  

 curent_l3 A 0  

 energy_a kWh 0, -1h, 
-1d  

 demand_a MW 0 yes 

 demand_r kvar 0  

Weather temperature °C  yes 

 wind speed m/s  yes 

 wind direction °  yes 

 Visibility km  yes 

 Humidity %  yes 

 Pressure mbar  yes 

 cloud cover %  yes 

Weather 
forecast temperature °C t  

 wind speed m/s t  

 wind direction ° t  

 cloud cover % t  

 Humidity % t  

Static 
propertie
s 

weekday  t  

 dayOfWeek  t  

 month  t  

 working day  t  



Type 
Feature 

Name UoMa Valueb Aggr. c 

 working hour  t  

 holiday  t  

 day before 
holiday 

 t  

 day after 
holiday 

 t  

a. Unit of measurement 
b. Value, expressed with relative time (0 = current timestamp, -1h je 

timestamp 1 hour ago; t denotes the timestamp of prediction) 
c. Configuration of aggregates is much more complex, further details can be 

found in [1] 
 
The sensor data can be understood as the most fundamental 
streaming data. In an ideal case it is arriving to the SPE in 
(almost) real time as a conservative data stream (where 
measurements are ordered by a timestamp). Often transport 
systems implement different kinds of buffering, which means that 
the data is coming either with a delay, or even in chunks of 
multiple measurements. In a streaming scenario it is important 
that we are able to handle any exceptions and ensure that stream 
mining methods are fed feature vectors only when they include 
the most recent data.  
Forecast data represents different kind of predictions, most 
commonly weather predictions. Forecasted data can also be 
classified as a stream, but with different properties. Forecasts get 
updated regularly. For example weather forecasts are updated 
every few hours and the system needs to be able to update the 
time series. 
Static properties data is relatively easy to handle, as it can (in 
most cases) be calculated “a priori”. Such data includes features 
like time of day, week, day of year, day of week, holidays, 
working days, weekends, moon phase etc. The data is similar to 
sensor data in the sense that it does not need to be updated and to 
prediction data in the sense that models usually refer to the future 
(and not current) values. 

3. HANDLING MULTI-MODAL DATA 
The implemented system has already been described in detail in 
[1]. In this contribution we will only describe the outline of the 
work done on the technical part and will rather focus on the 
results. 
The system is built on top of the QMiner open-source platform 
[3]. We implemented two different systems: a data system and a 
modelling system. In the current setup we are running one 
instance of a data system (which collects data, orders it by time, 
handles properties and static data, and distributes it) and multiple 
instances of modelling systems (which merge separate data 
streams, resample them, create feature vectors, and model).  
In the whole pipeline a number of components have been 
implemented: store generators, data adapters, aggregators, a time 
sync component, a load manager, a receiver, merger, a resampler, 
a meta-merger, and a semi-automated modeller. 
The final result is a (single point) configurable system that is able 
to learn on the past data and give almost real-time predictions for 
various phenomena. 

4. RESULTS 
The proposed methodology follows the on-line learning paradigm. 
All the evaluations were done on real-time, or a simulated stream 
of real, data. 
The following methods have been implemented in the platform: 

• Linear regression (LR) 

• Support Vector Machine Regression (SVMR) 

• Neural networks (NN) 

• Moving average multiple models (MA) 

• Hoeffding trees (HT) 
Most of the methods were adjusted to work in a stream mining 
scenario, except SVMR, which uses repetitive learning. 
Properties of the predicted values have enabled us to use well 
known evaluation metrics. We have computed the mean error 
(ME), the root mean squared error (RMSE), and the R2 measure 
to determine the best possible model. 
Feature sets in the results below are denoted by: 

• AR – auto-regressive features 

• F – weather forecasts 

• P – static properties 

• S – additional sensor data 

• ALL –a  full feature vector 
Modelling demand in the energy related scenarios seemed to be 
quite unified for all the studied use cases. The customer is usually 
interested in an energy profile for the next 24-36 hour period at 
around 12:00 each day.  
The data has a distinct daily period and the first modelling 
decision was to build 24 models for the task – each predicting for 
a specific hour of the day. 
An interesting observation was that the weather data (current) 
never improved the accuracy of predictions. Weather data from 
available global web services also seems to contribute little to the 
prediction model. Historic weather forecasts from the web service 
used are very accurate (service provides the latest – short term - 
prediction for a location), which means that some bias of the 
longer term weather predictions might be lost. How this effects 
the modelling has not been studied. 

4.1 Public Building (CSI) 
Public building in Turin offered 2 years of data for the learning 
phase and 1.3 years of data for evaluation. The total number of 
features was 48. We were trying to predict building electricity 
consumption (cooling excluded).  
All of the methods behaved quite well on this data set, but SVMR 
yielded the best results. All the methods in this case have been 
significantly better than the best base-line method (moving 
average over the last week). Results are shown in Table 2. 
 

  Table 2. Results from public building (CSI) use case 

Method-feature set (parameters) 
Error Measure 

ME RMSE R2 

SVMR-ARFP (eps=0.015) -2,74 16,50 0,84 



Method-feature set (parameters) 
Error Measure 

ME RMSE R2 

SVMR-ARP (eps=0.05) -2,51 17,23 0,83 

LR-ARFP -3,24 17,96 0,81 

LR-ARP -3,46 18,19 0,81 

SVMR-ALL (eps=0.05) -1,96 18,67 0,80 

LR-ARSFP -0,78 19,54 0,78 

LR-ARSP -0,81 19,74 0,77 

NN-ALL (6,lr=0.02) 0,32 19,90 0,77 

HT-ARSFP -2,69 20,02 0,77 

MA (7) 0,01 30,89 0,44 

 
In Figure 1 an example of prediction vs. measurements is 
depicted. This is a normal example form the validation part of the 
data set. We can see that the model is unexpectedly good with an 
exception of Mondays, where something that could not be 
modelled by the feature set appeared. 
 

 
Figure 1. Prediction for a selected Turin public building, for a 

week in February 2015. 
Further drill-down of the weights of the LR model has shown that 
the most significant features were the 1(one) week aggregates of 
auto-regressive and other sensor features. From the weather 
forecast feature temperature was surprisingly not among the most 
significant features, but cloud cover (solar radiation) and humidity 
were. Additional features such as day/hour classification 
(weekend, holiday, day after holiday, working hours, and heating 
season) were utilized the most. 

4.2 University Campus Building (NTUA) 
University campus of NTUA offers 5 years of valid data, which 
was divided into 3 years for learning and 2 years for evaluation. 
We are modelling average power demand for a selected building. 
Results of the tests on this dataset have shown that the features 
provided for modelling are unable to handle all the dynamics of 
the system. Parts of the test data have been modelled quite well 
(see Figure 2), but the model did not handle the other parts well 
(see Figure 3). This might be a good indicator of possibly faulty, 
or simply missing data in the feature set. 

 
Figure 2. Model works well at some point. 

 

 
Figure 3. Unhandled exceptions in the modelling. 

4.3 Energy Prices in Energy Spot Market 
(EPEX) 
Data for the energy spot market has been scraped from the EPEX 
spot market web pages and streamed into the platform. At the 
testing phase there were 3 years of data available for learning and 
1.4 years for evaluation. Energy prices and total trading energy for 
Germany were used in the experiments. 
Energy prices strongly depend on the production of energy from 
the alternative energy sources. The production costs for such 
energy are usually very low or equal to zero, but the energy grid is 
not yet prepared for such irregular intake of energy. Excessive 
production of energy form alternate sources therefore results in 
lowered prices (sometimes even negative prices). 
Feature vectors have therefore included data from 6 different 
weather stations across Germany, especially the wind data (speed 
and bearing) and cloud cover were expected to be the most 
important features. 
 



  Table 3. Results from energy prices (EPEX) use case 

Method-feature set (parameters) 
Error Measure 

ME RMSE R2 

LR-ARSFP -0,53 8,59 0,71 

LR-ALL -0,28 8,64 0,70 

SVMR-ALL (c=0,037, eps=0,034) 1,01 8,94 0,63 

LR-ARFS -0,22 10,29 0,58 

HT-ARSFP -2,29 13,41 0,29 

 
According to Table 3 the safest methods behave best. Weight 
analysis of the LR showed that the most important features were 
energy prices in the previous days, total traded energy averages 
for 1 week, 1 month, and minimum/maximum total traded 
energies for previous week. 
 

 
Figure 4. Prediction for EPEX use case for energy prices. 

From the weather data it was interesting to see that wind bearing 
was the most dominant feature (as it was much more weighted 
than wind speed). Cloud cover has not contributed significantly to 
the behaviour of the models. 

4.4 Thermal Plant (IREN) 
1.6 years of data for thermal plant in Reggio nell’Emilia were 
available. 1.1 year was used in the learning phase and 0.5 years 
for testing. There were 43 features in the dataset. 
During the experiments we were unable to satisfactory model part 
of the data and therefore some of the measures in Table 4 are 
distorted. The results for most of the data set are however very 
good, as can be seen in Figure 5. 

  Table 4. Results from thermal plant (IREN) use case 

Method-feature set (parameters) 
Error Measure 

ME RMSE R2 

LR-ALL -1,27 17,41 0,80 

LR-AR -0,08 17,94 0,79 

MA (4) -0,70 17,99 0,79 

NN (4-6-3, lr=0.04) -0,10 18,65 0,77 

SVMR (c=0.03, e=0.02) 0,19 19,25 0,75 

 
The weight analysis of the LR model shows significant 
contributions from most of the features. 

 

 
Figure 5. IREN use case prediction example. 

 

5. CONCLUSIONS 
In this paper we have presented models developed in the energy 
related scenarios using stream mining methods. We have 
developed a stack of components that are able to handle sensor 
data, forecasts, and static properties in a stream mining scenario. 
The platform has enabled us to provide streaming models for 
different energy-related phenomena. With the platform we are 
able to handle heterogeneous data from different independent data 
sources, such as different sensor systems, web services, or static 
flat files. 
Accuracy of the developed models is mostly very good; however 
there are periods in the evaluation sets that we were sometimes 
unable to handle, which indicates insufficient feature sets. 
The described developed models are currently in use. 
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