

A MULTI-SCALE METHODOLOGY FOR EXPLAINING
DATA STREAMS

Luka Stopar

Jozef Stefan Institute and Jožef Stefan International Postgraduate School,
amova 39, 1000 Ljubljana, Slovenia

Tel: +386 1 477-53-61
e-mail: luka.stopar@ijs.si

ABSTRACT

This paper presents a novel, multi-scale, framework, for
the simultaneous analysis of multiple data streams,
called StreamStory. The framework models the data
streams as a hierarchical Markovian model by
automatically learning states and transitios, and
aggregating them into a hierarchy of Markov chains.
This approach aims to compensate the gap between low-
level streaming observations and high-level
output/alerts which provide a value for higher levels of
streaming data analysis, like inference and prediction,
and provides ground for qualitative interpretation of
the data.

1 INTRODUCTION
Sensory systems typically operate in cycles with a
continuously time-varying component. Such systems can be
characterized by a set of states, along with the associated
state transitions. These states, on a high level, may include a
“day” state, “night” state or maybe states with high and low
productivity. For example when a pilot of an aircraft wishes
to change the aircrafts heading, they will put the aircraft into
state “banking turn” by lowering one aileron and raising the
other, causing the aircraft to perform a circular arc. After
some time, the wings of the aircraft will be brought level by
an opposing motion of the ailerons and the aircraft will go
into the “level” state.
Such high-level states can further be split into lower-level
states, giving us a multi-resolution view of the system,
allowing us to observe the system on multiple aggregation
levels. For example, a “banking turn” state can be split by
the aircrafts roll and angular velocity, resulting in perhaps
three states: “initiate turn”, “full turn” and “end turn”.
StreamStory models the monitored system as a hierarchical
Markovian process by automatically learning the typical
lowest-level states and transitions, and aggregating them to
obtain a hierarchy of Markovian processes. Such a model
allows users to observe the monitored system in a unique
way and provide a understanding of its dynamics.
Furthermore, we divide the input streams into two sets:
observation set and control set. The observation set of
paramters are the paramters that tell us the state of the

system and, we assume, cannot influence its dynamics.
These are parameters that users cannot directly manipulate,
like aircraft tilt. They are used to identify, and aggregate,
low-level states, detect outliers (anomalies) and determine
the current state of the system. In contrast, users can directly
manipulate parameters in the control set. These are
parameters like the angle of each aileron, and may directly
influence the behavior (observation set) and performance of
the system. For example when an operator in a steel factory
sets the cooling temperature to a high value, the product will
take longer to go from state “extremely hot” to state
“warm”. As such, control parameters may also influence the
occurrence, and expected time, of undesired states that may
be associated with some undesired event. Our approach uses
control parameters to model state transitions, allowing us to
observe the dynamics with respect to the current
configuration and gives the user insight into the expected
bynamics before changing the configuration.
To implement the framework, we subdivide it into four
components: (1) state identifier, (2) hierarchy modeler, (3)
state assistant and (4) transition modeler, each responsible
for its own subtask and explained in the next section.
The remainder of this paper is structured as follows. Section
2 presents on overview of the systems architecture. The user
interface is presented in section 3 and, finally, we provide
conclusions and acknowledgements in sections 4 and 5
respectively.

2 STREAMSTORY ARCHITECTURE
This section presents the architecture of the StreamStory
system. StreamStory operates in two modes: offline and
online. In offline mode the system consumes a batch of the
data streams and learns its hierarchical Markovian
representation (identifies states, constructs a hierarchy and
models transitions). Once the model is learned, it can be
applied to the data streams in real-time and offers prediction
and anomaly detection services. The component also
includes a web-based user interface (UI), where the users
can explore and interact with the model.
We continue our discussion with a picture of the architecture
in Figure 1.

As shown, the component is a JavaScript wrapper arount
two feature spaces (one for each set of parameters) and a
stream modeler component, and interacts with the user
interface using RESTful web services.
The two feature spaces are responsible for the
transformation of the data into (and out of) feature vectors,
later used by the algorithms. Each feature space consists of
several feature extractors (one for each parameter) which are
responsible for transforming a single parameter into a form
suitable for machine learning algorithms. The responsibility
of the feature space is then to concatenate the ouputs of all
the feature extractors into a single feature vector.
The third component is the stream modeler, which is the
core component of the system. It is responsible for state
identification and assistance, modeling the hierarchy,
prediction and anomaly detection. The modeler delegates
these tasks to four components: state identifier, hierarchy
builder, state assistant and transition modeler, which are
explained in the following subsections.

State Identifier

The first of these components is the state identifier. In
offline mode it is responsible for the identification and
construction of the lowest level states. Once these states are
constructed it computes and stores their statistics for further
use in the user interface (UI) and detection of anomalies. In
online mode, the state identifier is used to identify the
current state of the system, from the feature vectors, and for
low-level anomaly detection.

To identify the states, the state identifier uses the DPMeans
algorithm [1]. The algorithm takes one input parameter λ,
which represents the maximum goemetrical radius of each
state and is used to control the number of output states. The
algorithm is very similar to K-Means [2]. It starts by
randomly selecting one of the feature vectors as the initial
centroid. In each iteration, it then assigns the feature vectors
to their nearest centroid, but unlike K-Means if the vector is
outside the radius of all the centroids, it is used to form a
new centroid.
When used in online mode, the state identifier is responsible
for identifying the state to which the current feature vector
belongs. This is done by assigning the feature vector to the
state with the nearest centroid. If the feature vector falls
outside the radious of all the states, it is marked as an
anomaly.

 Hierarchy Modeler

Once the low-level states are identified, they are aggregated
into a hierarchy. This is precisely the task of the hierarchy
modeler. The hierarchy modeler consumer a set of states
(centroids), aggregates them into a hierarchy and stores it in
two arrays. The first array encodes the topology of the
hierarchy, by storing at index i the index of i-ths parent. The
second array stores the hight (level) of each state.
To compute the topology, the hierarchy modeler uses one of
several agglomerative clustering strategies: single link,
complete link or average link [3].
In online mode the hierarchy modeler is responsible for two
tasks: (1) given the current lowest level state, finding its

Figure 1: StreamStory architecture.

parent states on specific levels and (2) given a state in the
middle of the topology, finding all its lowest level
successors later used by the transition modeler.

State Assistant

The state assistant is responsible for assisting the users in
identifying the meaning of states. For example, when the
user clicks on a state in the UI, the state assistant highlights
the attributes that are most typical for the state. This is
achieved by extracting weights of individual features from a
logistic regression model [4] learned by classifying feature
vectors of one state (positive label) against feature vectors of
all the other states (negative labels). To balance the class
distribution, the component samples the larger set.

Transition Modeler

The final component in our framework is the transition
modeler. As the name suggests, the transition modeler
models transitions between states. It does so by using a
continuous time Markov Chain framework [5]. On the
lowest level, the model is defined with a transition rate
matrix Q, where the element at posisiton (i,j) represents the
rate of going from state i to state j.
To be able to model the hierarchical dynamics, we need to
be able to compute the transition rate matrix for Ql on each
level l of the hierarchy. The transition modeler only stores
the lowest-level transition matrix and uses it to construct
higher level matrices on the fly. To achieve this, it needs to
know which low-level states to aggregate. It gets this

information in the form of state-sets , where each state-
set corresponds to an aggregated state on level l. It then
computes the transition rate matrix on level l using the
following formula:

∑ ∈ ∑ ∈

∑ ∈

Where is the stationary distribution of the lowest
level Markov chain and is found as a normalized non-trivial
solution to the following system of equations: 0.

3 USER INTERFACE AND USER INTERACTION
This section presents the user interface (UI) of the
StreamStory system. The UI is designed to allow the user to
observe the dynamics of the monitored system, as well as its
current state, and allow the user to configure the underlying
model, prediction and anomaly detection services. It
visualizes the monitored system as a hierarchy of states,
along with associated transitions, and offers several services
that allow the user to identify the meaning of states as well
as a messaging service which displays notifications about
predictions and anomalies.
Figure 2 shows a screenshot of our web-based user interface.
The UI consists of four main components: visualization
component, state information component, notifications
component and model configuration component. These will
be explained in the next subsections.

Figure 2: StreamStories web-based user interface .

Visualization Component

The visualization component is the main component of the
UI, as it visualizes, and allows the end-users to explore and
interact with the model.
States and transitions are represented by a circles and arrows
respectively. The size of a circle is proportional to the
fraction of time that the system spends in the associated
state. Each state displays its identifier (or name if already
defined) and the average time spent in the state after arrival.
The current and previous states are highlighted with a green
and red border respectively, and the most likely future states
have a blue background, with the blue component
proportional to the probability of jumping into the state. The
states with a target in the background are “target” states and
the state with the bold bolder is the selected state and its
details are shown in the state details component, described
in the next subsection. When the system changes states, the
UI is automatically updated through web sockets. The
thickness of each arrow is proportional to the probability of
the corresponding transition, also displayed in the middle of
the arrow.
When first opening the UI, the model is shown at the top
level with only 2-3 states. The user can use the scroll
function to scroll into lower-level states. When scrolling
up/down the hierarchy, the states are automatically
merged/split.
A popup menu in the top right corner of the component
allows the user to:

 Select a target feature: When selecting a target
feature, all the states are coloured proportionally to
the mean value of the feature in that state. For
example, when selecting ambient temperature, the
states with higher temperature will become greener
than states with lower temperature.

 Observe state probabilities at future times: When
moving the spinner at the bottom of the menu states
get colored proportionally to the probability of the
system being in that state at the appropriate
future/past time.

 Simulate control paramters: Using the first group of
sliders, the user can simulate a change in
parameters in the control set. When adjusting one
of the parameters, the transition probabilities are
recalculated along with the corresponding holding
times and the component automatically redrawn.

State Details Component

As the name suggests, the state details component shows
detailed information about the selected state. It provides
basic information, like name and id, as well as more detailed
information like: the average values of parameters in the
state along with their distribution (shown as histograms)
and the most typical parameters for the state, which are
highlighted (red or green) according to their relevance.
The state details component also allows the user to mark the
state as a “target”. When a state is marked as a target,

notifications about the expected arrival times are displayed
in the notifications component presented next.

Notifications Component

The notifications component displays messages to the end-
user. These messages include information about the detected
anomalies and predictions of arrival into target states. When
detailed information about the message is available, the
message is clickable and, upon clicking, its details are
shown in a popup window.

Model Configuration Component

The model configuration component allows the user to
modify the parameters of the underlying model. In the
current version, the user can adjust parameters
corresponding to the prediction of target states. These
include the prediction probability threshold, and the time
horizon usied in the calculation of the probability.

4 CONCLUSION
In this paper we presented a novel system for modeling and
visualizing data streams called StreamStory. The
StreamStory system integrates several machine learning
algorithms to model the incoming data streams as a
hierarchical Markovian process. As such the system supports
several functionalities, including: future state extrapolation,
anomaly detection and allows the users to uniquely
interprate the stream structure. The system includes a web-
based user interface which allows the interaction and
exploration of the model.

5 ACKNOWLEDGMENTS
This work was supported by the Slovenian Research Agency
and the ICT Programme of the EC under project ProaSense
(FP7-ICT-2013-10-612329).

REFERENCES

[1] K. Brian and M. I. Jordan, "Revisiting k-means: New
Algorithms via Bayesian Nonparametrics," in
Preceedings of the 29th International Conference on
Machine Learning, 2012.

[2] I. H. Witten, E. Frank and M. A. Hall, Data Mining:
Practical Machine Learning Tools and Techniques,
Burlington: Elsevier Inc., 2011.

[3] F. Murtagh and P. Contreras, "Algorithms for
Hierarchical Clustering: An Overview," Wiley
Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, vol. 2, no. 1, pp. 86-97, 2012.

[4] A. J. Dobson, An Introduction to Generalized Linear
Models, Boca Raton: Chapman & Hall/CRC, 2002.

[5] J. Norris, Markov Chains, Cambridge: Cambridge
University Press, 1997.

