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ABSTRACT 
 

This paper presents a novel, multi-scale, framework, for 
the simultaneous analysis of multiple data streams, 
called StreamStory. The framework models the data 
streams as a hierarchical Markovian model by 
automatically learning states and transitios, and 
aggregating them into a hierarchy of Markov chains. 
This approach aims to compensate the gap between low-
level streaming observations and high-level 
output/alerts which provide a value for higher levels of 
streaming data analysis, like inference and prediction, 
and provides ground for qualitative interpretation of 
the data. 

 
1  INTRODUCTION 
Sensory systems typically operate in cycles with a 
continuously time-varying component. Such systems can be 
characterized by a set of states, along with the associated 
state transitions. These states, on a high level, may include a 
“day” state, “night” state or maybe states with high and low 
productivity. For example when a pilot of an aircraft wishes 
to change the aircrafts heading, they will put the aircraft into 
state “banking turn” by lowering one aileron and raising the 
other, causing the aircraft to perform a circular arc. After 
some time, the wings of the aircraft will be brought level by 
an opposing motion of the ailerons and the aircraft will go 
into the “level” state. 
Such high-level states can further be split into lower-level 
states, giving us a multi-resolution view of the system, 
allowing us to observe the system on multiple aggregation 
levels. For example, a “banking turn” state can be split by 
the aircrafts roll and angular velocity, resulting in perhaps 
three states: “initiate turn”, “full turn” and “end turn”. 
StreamStory models the monitored system as a hierarchical 
Markovian process by automatically learning the typical 
lowest-level states and transitions, and aggregating them to 
obtain a hierarchy of Markovian processes. Such a model 
allows users to observe the monitored system in a unique 
way and provide a understanding of its dynamics. 
Furthermore, we divide the input streams into two sets: 
observation set and control set. The observation set of 
paramters are the paramters that tell us the state of the 

system and, we assume, cannot influence its dynamics. 
These are parameters that users cannot directly manipulate, 
like aircraft tilt. They are used to identify, and aggregate, 
low-level states, detect outliers (anomalies) and determine 
the current state of the system. In contrast, users can directly 
manipulate parameters in the control set. These are 
parameters like the angle of each aileron, and may directly 
influence the behavior (observation set) and performance of 
the system. For example when an operator in a steel factory 
sets the cooling temperature to a high value, the product will 
take longer to go from state “extremely hot” to state 
“warm”. As such, control parameters may also influence the 
occurrence, and expected time, of undesired states that may 
be associated with some undesired event. Our approach uses 
control parameters to model state transitions, allowing us to 
observe the dynamics with respect to the current 
configuration and gives the user insight into the expected 
bynamics before changing the configuration. 
To implement the framework, we subdivide it into four 
components: (1) state identifier, (2) hierarchy modeler, (3) 
state assistant and (4) transition modeler, each responsible 
for its own subtask and explained in the next section. 
The remainder of this paper is structured as follows. Section 
2 presents on overview of the systems architecture. The user 
interface is presented in section 3 and, finally, we provide 
conclusions and acknowledgements in sections 4 and 5 
respectively. 
 
2 STREAMSTORY ARCHITECTURE 
This section presents the architecture of the StreamStory 
system. StreamStory operates in two modes: offline and 
online. In offline mode the system consumes a batch of the 
data streams and learns its hierarchical Markovian 
representation (identifies states, constructs a hierarchy and 
models transitions). Once the model is learned, it can be 
applied to the data streams in real-time and offers prediction 
and anomaly detection services. The component also 
includes a web-based user interface (UI), where the users 
can explore and interact with the model.  
We continue our discussion with a picture of the architecture 
in Figure 1.  



As shown, the component is a JavaScript wrapper arount 
two feature spaces (one for each set of parameters) and a 
stream modeler component, and interacts with the user 
interface using RESTful web services. 
The two feature spaces are responsible for the 
transformation of the data into (and out of) feature vectors, 
later used by the algorithms. Each feature space consists of 
several feature extractors (one for each parameter) which are 
responsible for transforming a single parameter into a form 
suitable for machine learning algorithms. The responsibility 
of the feature space is then to concatenate the ouputs of all 
the feature extractors into a single feature vector. 
The third component is the stream modeler, which is the 
core component of the system. It is responsible for state 
identification and assistance, modeling the hierarchy, 
prediction and anomaly detection. The modeler delegates 
these tasks to four components: state identifier, hierarchy 
builder, state assistant and transition modeler, which are 
explained in the following subsections. 

State Identifier 

The first of these components is the state identifier. In 
offline mode it is responsible for the identification and 
construction of the lowest level states. Once these states are  
constructed it computes and stores their statistics for further 
use in the user interface (UI) and detection of anomalies. In 
online mode, the state identifier is used to identify the 
current state of the system, from the feature vectors, and for 
low-level anomaly detection. 

To identify the states, the state identifier uses the DPMeans 
algorithm [1]. The algorithm takes one input parameter λ, 
which represents the maximum goemetrical radius of each 
state and is used to control the number of output states. The 
algorithm is very similar to K-Means [2]. It starts by 
randomly selecting one of the feature vectors as the initial 
centroid. In each iteration, it then assigns the feature vectors 
to their nearest centroid, but unlike K-Means if the vector is 
outside the radius of all the centroids, it is used to form a 
new centroid. 
When used in online mode, the state identifier is responsible 
for identifying the state to which the current feature vector 
belongs. This is done by assigning the feature vector to the 
state with the nearest centroid. If the feature vector falls 
outside the radious of all the states, it is marked as an 
anomaly. 

 Hierarchy Modeler 

Once the low-level states are identified, they are aggregated 
into a hierarchy. This is precisely the task of the hierarchy 
modeler. The hierarchy modeler consumer a set of states 
(centroids), aggregates them into a hierarchy and stores it in 
two arrays. The first array encodes the topology of the 
hierarchy, by storing at index i the index of i-ths parent. The 
second array stores the hight (level) of each state. 
To compute the topology, the hierarchy modeler uses one of 
several agglomerative clustering strategies: single link, 
complete link or average link [3]. 
In online mode the hierarchy modeler is responsible for two 
tasks: (1) given the current lowest level state, finding its 

 

Figure 1: StreamStory architecture. 



parent states on specific levels and (2) given a state in the 
middle of the topology, finding all its lowest level 
successors later used by the transition modeler. 

State Assistant 

The state assistant is responsible for assisting the users in 
identifying the meaning of states. For example, when the 
user clicks on a state in the UI, the state assistant highlights 
the attributes that are most typical for the state. This is 
achieved by extracting weights of individual features from a 
logistic regression model [4] learned by classifying feature 
vectors of one state (positive label) against feature vectors of 
all the other states (negative labels). To balance the class 
distribution, the component samples the larger set. 

Transition Modeler 

The final component in our framework is the transition 
modeler. As the name suggests, the transition modeler 
models transitions between states. It does so by using a 
continuous time Markov Chain framework [5]. On the 
lowest level, the model is defined with a transition rate 
matrix Q, where the element at posisiton (i,j) represents the 
rate of going from state i to state j. 
To be able to model the hierarchical dynamics, we need to 
be able to compute the transition rate matrix for Ql on each 
level l of the hierarchy. The transition modeler only stores 
the lowest-level transition matrix and uses it to construct 
higher level matrices on the fly. To achieve this, it needs to 
know which low-level states to aggregate. It gets this 

information in the form of state-sets , where each state-
set corresponds to an aggregated state on level l. It then 
computes the transition rate matrix on level l using the 
following formula: 
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Where  is the stationary distribution of the lowest 
level Markov chain and is found as a normalized non-trivial 
solution to the following system of equations: 0. 
 
3 USER INTERFACE AND USER INTERACTION 
This section presents the user interface (UI) of the 
StreamStory system. The UI is designed to allow the user to 
observe the dynamics of the monitored system, as well as its 
current state, and allow the user to configure the underlying 
model, prediction and anomaly detection services. It 
visualizes the monitored system as a hierarchy of states, 
along with associated transitions, and offers several services 
that allow the user to identify the meaning of states as well 
as a messaging service which displays notifications about 
predictions and anomalies. 
Figure 2 shows a screenshot of our web-based user interface. 
The UI consists of four main components: visualization 
component, state information component, notifications 
component and model configuration component. These will 
be explained in the next subsections. 

 

Figure 2: StreamStories web-based user interface . 



 

Visualization Component 

The visualization component is the main component of the 
UI, as it visualizes, and allows the end-users to explore and 
interact with the model. 
States and transitions are represented by a circles and arrows 
respectively. The size of a circle is proportional to the 
fraction of time that the system spends in the associated 
state. Each state displays its identifier (or name if already 
defined) and the average time spent in the state after arrival. 
The current and previous states are highlighted with a green 
and red border respectively, and the most likely future states 
have a blue background, with the blue component 
proportional to the probability of jumping into the state. The 
states with a target in the background are “target” states and 
the state with the bold bolder is the selected state and its 
details are shown in the state details component, described 
in the next subsection. When the system changes states, the 
UI is automatically updated through web sockets. The 
thickness of each arrow is proportional to the probability of 
the corresponding transition, also displayed in the middle of 
the arrow.  
When first opening the UI, the model is shown at the top 
level with only 2-3 states. The user can use the scroll 
function to scroll into lower-level states. When scrolling 
up/down the hierarchy, the states are automatically 
merged/split. 
A popup menu in the top right corner of the component 
allows the user to: 

 Select a target feature: When selecting a target 
feature, all the states are coloured proportionally to 
the mean value of the feature in that state. For 
example, when selecting ambient temperature, the 
states with higher temperature will become greener 
than states with lower temperature. 

 Observe state probabilities at future times: When 
moving the spinner at the bottom of the menu states 
get colored proportionally to the probability of the 
system being in that state at the appropriate 
future/past time. 

 Simulate control paramters: Using the first group of 
sliders, the user can simulate a change in 
parameters in the control set. When adjusting one 
of the parameters, the transition probabilities are 
recalculated along with the corresponding holding 
times and the component automatically redrawn. 

State Details Component 

As the name suggests, the state details component shows 
detailed information about the selected state. It provides 
basic information, like name and id, as well as more detailed 
information like: the average values of parameters in the 
state along with their distribution (shown as histograms)  
and the most typical parameters for the state, which are 
highlighted (red or green) according to their relevance. 
The state details component also allows the user to mark the 
state as a “target”. When a state is marked as a target, 

notifications about the expected arrival times are displayed 
in the notifications component presented next. 

Notifications Component 

The notifications component displays messages to the end-
user. These messages include information about the detected 
anomalies and predictions of arrival into target states. When 
detailed information about the message is available, the 
message is clickable and, upon clicking, its details are 
shown in a popup window. 

Model Configuration Component 

The model configuration component allows the user to 
modify the parameters of the underlying model. In the 
current version, the user can adjust parameters 
corresponding to the prediction of target states. These 
include the prediction probability threshold, and the time 
horizon usied in the calculation of the probability. 
 
4 CONCLUSION 
In this paper we presented a novel system for modeling and 
visualizing data streams called StreamStory. The 
StreamStory system integrates several machine learning 
algorithms to model the incoming data streams as a 
hierarchical Markovian process. As such the system supports 
several functionalities, including: future state extrapolation, 
anomaly detection and allows the users to uniquely 
interprate the stream structure. The system includes a web-
based user interface which allows the interaction and 
exploration of the model. 
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