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ABSTRACT
In rule learning, rules are typically induced in two phases,
rule refinement and rule selection. It was recently argued
that the usage of two separate heuristics for each phase—in
particular using the so-called inverted heuristic in the refine-
ment phase—produces longer rules with comparable classifi-
cation accuracy. In this paper we test the utility of inverted
heuristics in the context of subgroup discovery. For this pur-
pose we developed a DoubleBeam subgroup discovery algo-
rithm that allows for combining various heuristics for rule
refinement and selection. The algorithm was experimentally
evaluated on 20 UCI datasets using 10-fold double-loop cross
validation. The experimental results suggest that a variant
of the DoubleBeam algorithm using a specific combination
of refinement and selection heuristics generates longer rules
without compromising rule quality. However, the Double-
Beam algorithm using inverted heuristics does not outper-
form the standard CN2-SD and SD algorithms.

1. INTRODUCTION
Rule learning is one of the earliest machine learning tech-

niques and has been used in numerous applications [5]. It
is a symbolic data analysis technique whose aim is to dis-
cover comprehensible patterns or models of data [10]. The
key advantage of rule learning compared to other statisti-
cal learning techniques is its inherent simplicity and human
comprehensible output models and patterns.

Symbolic data analysis techniques can be divided into
two categories. Techniques for predictive induction produce
models, typically induced from class labeled data, which are
used to predict the class of previously unseen examples. The
second category consists of techniques for descriptive induc-
tion, where the aim is to find comprehensible patterns, typ-
ically induced from unlabeled data. There are also descrip-
tive induction techniques that discover patterns in the form
of rules from labeled data, which are referred to as supervised
descriptive rule discovery approaches [10]. Typical represen-
tatives of these techniques are contrast set mining (CSM) [2],
emerging pattern mining (EPM) [4], and subgroup discovery
(SD) [9, 16].

The task of subgroup discovery is to find interesting sub-
groups in the population i.e., subgroups that have a signif-
icantly different class distribution than the entire popula-
tion. The result of subgroup discovery is a set of individual
rules, where the rule consequence is a class value. The main
difference between learning of classification rules and sub-
group discovery is that the latter induces only individual
rules of interest, revealing interesting properties of groups

of instances, and not necessarily forming a rule set covering
the entire problem space, which is required for classification.

An important characteristic of subgroup discovery task
is a combination of predictive and descriptive induction. It
provides short and understandable descriptions of subgroups
regarding the property of interest. This feature of subgroup
discovery has inspired many researchers to investigate new
methods that will be more effective in finding more inter-
esting patterns in the data. Most subgroup discovery ap-
proaches build on classification algorithms, e.g., EXPLORA
[9], MIDOS [16], SD [6], CN2-SD [13], and RSD [14], or on
the algorithms for association rule learning, e.g., APRIORI-
SD [8], SD-MAP [1], and Merge-SD [7].

In rule learning, during the process of rule construction,
conditions that optimize a certain heuristic are added. Typ-
ically, the heuristics are used in two different phases of the
process: (i) to evaluate rule refinements, i.e., to select which
of the refinements of the current rule will be further ex-
plored, and (ii) for rule selection, i.e., to decide which of
the refinements that have been explored is added to the rule
set. Stecher et al. [15] proposed using separate heuristics
for each of the two rule construction phases. In the rule re-
finement phase they proposed to use the inverted heuristics,
i.e., the heuristics whose isometrics are rotated around the
base rule. These heuristics are used to evaluate the relative
gain obtained by the refinement of the current rule.

In this paper we test the utility of inverted heuristics in
the context of subgroup discovery. For this purpose we de-
veloped a DoubleBeam subgroup discovery algorithm that
allows for combining various heuristics for rule refinement
and selection. The algorithm was experimentally evaluated
on 20 UCI datasets using 10-fold double-loop cross valida-
tion.

This paper is organized as follows. In Section 2 we present
the findings of Stecher et al. about the use of inverted
heuristics in the rule learning process. Section 3 presents
the DoubleBeam subgroup discovery algorithm. In Section
4 we describe the data sets used, followed by the empirical
evaluation and the obtained results. Finally, in Section 5 we
present our conclusions and ideas for further work.

2. INVERTED HEURISTICS
Rule learning algorithms rely on heuristic measures to

determine the quality of induced rule. Stecher et al. [15]
propose distinction between rule refinement and rule selec-
tion heuristics in inductive rule learning. They argue that
the nature of the separate-and-conquer rule learning algo-
rithms opens up a possibility to use two different heuristics



in two fundamental steps in the process of rule learning -
rule refinement and rule selection. They show in the cov-
erage space why it is beneficial to separate the evaluation
of candidates for rule refinement and the selection of rules
for the final theory. The rule refinement step in a top-down
search requires inverted heuristics, which, in principle, re-
sults in better rules. Such heuristics evaluate rules from the
point of the current base rule, instead of the empty rule.
They adapt three standard heuristics with slightly different
but related properties:

• Precision:

hprec(p, n) =
p

p + n
; (1)

• Laplace:

hlap(p, n) =
p + 1

p + n + 2
; (2)

• m-estimate:

hm−est(p, n,m) =
p + m · P

P+N

p + n + m
. (3)

Parameters p and n denote the number of positive and neg-
ative examples in a potential subgroup, respectively, and
regarding the target class of interest.

For the purpose of rule refinement an inverted heuristic is
used. Isometrics of inverted heuristics do not rotate around
the origin, but rotate around the base rule. Representations
of the inverted heuristics in the coverage space reveal the
following relationship with the basic heuristics:

h
′
(p, n) = h(N − n, P − p) (4)

where parameters P and N denote the number of positive
and negative examples in the data set with respect to the
target class, and dependent on the predecessor rule. Conse-
quently, the inverted heuristics have the following forms:

• Inverted precision:

h
′
prec(p, n) =

N − n

(P + N)− (p + n)
; (5)

• Inverted Laplace:

h
′
lap(p, n) =

N − n + 1

(P + N)− (p + n + 2)
; (6)

• Inverted m-estimate:

h
′
m−est(p, n,m) =

N − n + m · P
P+N

(P + N)− (p + n + m)
. (7)

Overall, in [15] the combination of Laplace heuristic hlap

in the rule selection step and inverted Laplace heuristic h
′
lap

in rule refinement step outperformed other combinations in
terms of average classification accuracy. An interesting side
conclusion from [15] is that the usage of inverted heuristics
in the rule refinement produces on average longer rules.

The tendency of inverted heuristics to find longer descrip-
tions and no additional parameters make the separation of
rule refinement and rule selection an appealing research ap-
proach in the domain of subgroup discovery, therefore, we

investigated the use of inverted heuristics in subgroup dis-
covery. For that purpose we implemented a new Double-
Beam algorithm for subgroup discovery which implements
the usage of separate refinement and selection heuristics
with beam search.

3. DOUBLEBEAM ALGORITHM
We implemented a DoubleBeam algorithm for subgroup

discovery. This algorithm consists of two beams, refinement
and selection beam. Upon initialization, each beam is filled
with the best features according to their refinement and se-
lection quality. The algorithm then enters a loop, where
it first refines the elements from the refinement beam with
features from the dataset. In each step, rules from the refine-
ment beam are refined by adding features to existing rules.
Newly produced rules are added to the refinement beam if
their refinement quality exceeds the refinement quality of ex-
isting rules in the refinement beam. Newly produced rules
are then evaluated according to their selection quality. Se-
lection beam is updated with newly induced rules whose
selection quality is better than the selection quality of rules
already in the beam. The algorithm exits the loop and stops
when there are no changes in the selection beam. The Dou-
bleBeam algorithm is outlined in Algorithm 1.

Input : E = P ∪N (E is the training set. |E| is the
training set size, P are the positive (class)
examples, N are negative (non-target)
examples), TargetClass

Output : subgroups
Parameters : min support, refinementBeamWidth,

selectionBeamWidth, refinement heuristics,
selection heuristics

CandidateList← all feature values or intervals

for each candidate in CandidateList do
evaluate candidate with refinement quality
evaluate candidate with selection quality

end

sort CandidateList according to the refinement quality

for i = 0 to refinementBeamWidth) do
RefinementBeam(i)← CandidateList(i)

end

sort CandidateList according to the selection quality

for i = 0 to selectionBeamWidth) do
SelectionBeam(i)← CandidateList(i)

end

do
RefinementCandidates← refine RefinementBeam with
CandidateList
update RefinementBeam with RefinementCandidates
using refinement quality
update SelectionBeam with RefinementCandidates
using selection quality

while while there are changes in SelectionBeam;
return SelectionBeam

Algorithm 1: DoubleBeam algorithm

4. EXPERIMENTAL RESULTS
The DoubleBeam algorithm was implemented in the Clowd-

Flows platform [12]. For the purpose of our evaluation,
we used the following combinations of refinement and selec-

tion heuristics: (h
′
lap, hlap), (h

′
prec, hprec), (h

′
m−est, hm−est),

(h
′
g, hg), and (hg, hg), (named DB-ILL (DoubleBeam-Inverted

Laplace, Laplace), DB-IPP (DoubleBeam-Inverted precision,



precision), DB-IMM (DoubleBeam-Inverted m-estimate, m-
estimate), DB-IGG (DoubleBeam-Inverted generalization-
quotient, generalization quotient), and DB-GG (DoubleBeam-
generalization quotient, generalization quotient) respectively).
The hg heuristic is the generalization quotient proposed in

[6], while h
′
g is its inverted variant. The generalization quo-

tient is a heuristic used in the SD algorithm. The SD algo-
rithm and the algorithms CN2-SD and APRIORI-SD were
already implemented in this platform.

4.1 Experimental setting
We use the same 20 UCI classification data sets as [15]

to compare three state-of-the-art subgroup discovery algo-
rithms (SD, CN2-SD, and APRIORI-SD) and the Double-
Beam algorithm with five combinations of refinement and
selection heuristics (DB-ILL, DB-IPP, DB-IMM, DB-IGG,
and DB-GG).

The comparison is performed in 10-fold double-loop cross
validation on each dataset. For each algorithm, a grid of
possible parameter values was set beforehand. The value of
min sup is set to 0.01. Each learning set (10 learning sets)
was additionally split into training and test data. For each
algorithm, models were built using the training data and its
parameters from the grid. Parameters maximizing the value
of unusualness of the produced subgroups were then chosen
for building a model using the learning set. Unusualness is
a measure which was presented in [13] and defined as:

(8)
WRAcc(Class← Cond) = p(Cond) · (p(Class|Cond)

− p(Class)).

We use the subgroup discovery evaluation function imple-
mented in Orange by Kralj et al. [11]. The function calcu-
lates the following measures: coverage, support, size, com-
plexity, significance, unusualness i.e., WRACC, classifica-
tion accuracy, and AUC.

4.2 Results
The WRACC values obtained in the experiments are shown

in Table 1. These values are averaged over all the classes for
every particular dataset. The values for the APRIORI-SD
algorithm tested on the horse-colic dataset are missing as
the algorithm did not converge in period over 5 days. For
the datasets where the WRACC values for the APRIORI-SD
algorithm are 0.000 the algorithm returned over 10, 000, 000
itemsets and did not finish properly. According to the ob-
tained results, the CN2-SD and the SD algorithm have the
best average ranks, and the Apriori-SD algorithm performs
the worst.

For comparison between methods we use the methodol-
ogy proposed by Demšar [3]. We operate under the null-
hypothesis that all the algorithms are equivalent. Two al-
gorithms differ significantly if the difference between their
average ranks is larger than the value of the critical differ-
ence.

The results of the Nemenyi test for the average values
of WRACC are shown in Figure 1. Average ranks of al-
gorithms are written in parentheses. The critical value is
2.35. It is evident that the CN2-SD algorithm produces
the most interesting subgroups, which are statistically more
unusual than the ones produced by the DoubleBeam al-

gorithm with the combinations (h
′
lap, hlap), (h

′
prec, hprec),

(h
′
m−est, hm−est), and the APRIORI-SD algorithm. There

are no statistically significant differences between the CN2-
SD algorithm, the SD algorithm, and the DoubleBeam al-

gorithm with the combinations (hg, hg) and (h
′
g, hg).

CN2-SD (2.27)

SD (2.30)

DB-GG (2.45)

DB-IGG (4.38)

DB-ILL (4.80)

DB-IPP (6.03)

DB-IMM (6.65)

APRIORI-SD (7.12)

CD = 2.35

8 7 6 5 4 3 2 1

Figure 1: Nemenyi test on WRACC values with a
significance level of 0.05.

The results of the Nemenyi test for the average rule size
are shown in Figure 2. The DoubleBeam algorithm with the

combination (h
′
prec, hprec) produces subgroups which are on

average described by the longest rules. The DB-IPP algo-
rithm generates subgroups described by rules that are statis-
tically longer only than the ones produced by the DB-IGG
algorithm. There is no statistical evidence that the DB-
IPP algorithm produces longer rules than other evaluated
algorithms. These results do not confirm that the Double-
Beam algorithm with inverted refinement heuristic produces
statistically longer rules than other subgroup discovery al-
gorithms.

DB-IPP (3.67)

APRIORI-SD (3.73)

DB-GG (3.75)

DB-IMM (4.05)

DB-ILL (4.28)

CN2-SD (4.75)

SD (4.80)

DB-IGG (6.97)

CD = 2.35

8 7 6 5 4 3 2 1

Figure 2: Nemenyi test on ranking of average rule
sizes (note that larger rules produce lower rankings)
with a significance level of 0.05.

5. CONCLUSIONS
The experiments indicate that subgroup describing rules

created using inverted heuristics used in [15] as rule refine-
ment heuristics in subgroup discovery are significantly less
interesting than the subgroups induced by the CN2-SD algo-
rithm, the SD algorithm, and the DB-GG algorithm. There
is no significant difference of the unusualness of the sub-
groups induced by the CN2-SD algorithm, the SD algorithm,
the DB-GG algorithm, and the DB-IGG algorithm. How-
ever, it has to be mentioned that the CN2-SD algorithm uses
WRACC as its heuristics for building subgroups.

The results also suggest that when the combination

(h
′
prec, hprec) of heuristics is used, the obtained rules tend to

have more rule conditions than the rules built by the other
state-of-the-art algorithms for subgroup discovery. However,
this difference is not statistically significant. The longer
rules created by the algorithms using inverted heuristics used
in [15] are more specific, thus subgroups contain lower num-
ber of examples and this decreases the unusualness of the
subgroups. Considering the evaluation results, we can con-
clude that the DoubleBeam algorithm which uses the combi-
nation (hg, hg) as refinement and selection heuristics can be
a good choice for subgroup discovery. It induces subgroups



Table 1: Ten-fold double-loop cross validation WRACC results for subgroup discovery. Best values are
written in bold.

Datasets SD APRIORI-SD CN2-SD DB-ILL DB-IPP DB-IMM DB-GG DB-IGG
breast-cancer 0.045 0.003 0.024 0.015 0.010 0.011 0.045 0.041
car 0.029 0.006 0.031 0.021 0.021 0.003 0.028 0.028
contact-lenses 0.080 0.031 0.066 0.036 0.023 0.000 0.081 0.081
futebol 0.017 0.004 0.009 0.003 0.002 0.000 0.001 0.000
glass 0.050 0.017 0.047 0.029 0.026 0.019 0.045 0.038
hepatitis 0.046 0.000 0.061 0.041 0.016 0.031 0.060 0.043
horse-colic 0.131 0.071 0.045 0.022 0.054 0.131 0.084
hypothyroid 0.025 0.000 0.031 0.019 0.009 0.007 0.032 0.024
idh 0.088 0.053 0.094 0.078 0.068 0.000 0.081 0.088
ionosphere 0.115 0.000 0.111 0.084 0.049 0.062 0.120 0.101
iris 0.162 0.119 0.197 0.148 0.098 0.045 0.165 0.169
labor 0.074 0.018 0.106 0.082 0.021 0.029 0.090 0.063
lymphography 0.058 0.015 0.046 0.045 0.042 0.038 0.056 0.036
monk3 0.068 0.014 0.065 0.041 0.024 0.007 0.068 0.058
mushroom 0.128 0.000 0.163 0.147 0.025 0.023 0.146 0.122
primary-tumor 0.018 0.004 0.009 0.007 0.009 0.004 0.011 0.008
soybean 0.033 0.000 0.037 0.023 0.023 0.009 0.028
tic-tac-toe 0.053 0.007 0.021 0.017 0.011 0.007 0.053 0.053
vote 0.184 0.052 0.201 0.157 0.076 0.120 0.188 0.164
zoo 0.083 0.000 0.096 0.041 0.020 0.025 0.086 0.058

that are comparable to the subgroups induced by the CN2-
SD algorithm and the SD algorithm in terms of their unusu-
alness. The subgroups induced by the DB-GG algorithm are
on average described by longer rules (see Figure 2).

No additional parameters required with inverted heuris-
tics and the obtained results regarding the average rule length
make the proposed approach an interesting research direc-
tion. In future we want to focus on the reasons why the
rules induced by the DB-ILL algorithm, the DB-IPP algo-
rithm and the DB-IMM algorithm are less interesting than
the ones produced by the standard subgroup discovery al-
gorithms and implement an approach which will solve this
issue. We also want to research the influence of inverted
heuristics in other state-of-the-art subgroup discovery algo-
rithms.
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