
 1

ABSTRACT

This paper presents an efficient indexing technique suitable for
indexing large n-gram collections with an emphasis on full
wildcard query support and speed efficiency. Further we used
this technique in building the n-gram search engine, on top of
Google’s Web 1T 5-gram collection, whose advantages are
interactive querying and fast result retrieval with tradeoff on
higher memory consumption.

1 INTRODUCTION
In the statistic NLP part of a research project we are using
Web 1T 5-gram Version 1 corpus contributed by Google Inc.
[1]. The corpus contains English word n-grams with length
ranging from unigrams (single word) to five-grams. It contains
around 4 billion n-grams and takes around 90 GB of memory.

Due to the corpus size we need an efficient indexing method
which enables interactive full wildcard querying support on the
data. Query time is our main priority that is why the index is
kept in primary memory to eliminate disk IO operations. We
have built our own system which is running on a server
machine with 512 GB of RAM and has a constant memory
usage of 280 GB.

2 RELATED WORK
There is a variety of different approaches and systems for
storing and querying large n-gram collections. One class of
approaches deals with an efficient representation of data in
terms of memory usage while it usually offers only basic
membership query.

There are approaches that seek for a tradeoff between memory
footprint, speed efficiency and query expressiveness. Usually
these are the combinations of fast in memory indexes of data
stored on disk, where frequent disk access reduces the
performance. Intuitive approach to achieve rich querying
capabilities is to store the collection in a relational database
and then index the data in desired manner [2], but here speed
and memory efficiency suffers.

The work presented in [3] is an approach with in memory B+
tree index to enable wildcard query support but with limitation
that wildcards in the query are continuous. Paper [4] describes
an offline query pre-processing approach where queries are
stored in nested hash table structure and answers are calculated
with a single pass through the corpus. [5] summarizes various
approaches and presents an efficient storing architecture with
n-grams stored in an enhanced prefix tree. It also supports
wildcard queries but not as efficiently as our system does.
Main advantages of our system are its interactivity (queries
are answered online), full wildcard query support and very
fast query result retrieval as searching for n-grams matching
a given pattern is fast and straight-forward procedure.

3 INDEXING APPROACH

A. DEFINITION
N-gram is a contiguous sequence of n items. Define the
number of items in the sequence as a degree of n-gram – for n-
gram Z we mark its degree as deg(Z). As in indexed corpus n-
grams are sequences of words, let Z[i] represent the word that
appears at position i in the n-gram Z.

Wildcard query is represented with wildcard query pattern
which is defined as n-gram Qp of a constant degree D. In our
case D equals 5 which is a maximum degree of n-gram from
the corpus. For each i = 1 … D, Qp[i] is either a word or a
wildcard represented as ‘*’ character. Furthermore we define
two functions: isWord(S[i]) which is true if there is a word at
position i in given n-gram S and isWildcard(S[i]) which is
true if there is a wildcard at position i in S. We say that n-
gram X is a member of the result set R of a given wildcard
query (n-gram X is said to be a match) if for each i =1 … D
the following holds: isWord(Qp[i]) and equals(Qp[i],X[i]) or
isWildcard(Qp[i]) – example is shown on figure 1. If deg(X) <
D then every such i where deg(X) < i is ignored when
determining if X is a match or not.

We define a set of supported wildcard queries Q as a set which
contains only wildcard queries our system currently supports –
we will need this definition in the next paragraphs.

INDEXING OF LARGE N-GRAM COLLECTION

Patrik Zajec, Marko Grobelnik
Artificial Intelligence Laboratory,

Jožef Stefan Institute
Jamova cesta 39, 1000 Ljubljana, Slovenia

e-mail: patrik.zajec@ijs.si, marko.grobelnik@ijs.si

 2

Figure 1: Result set of wildcard query where Qp=* tree * * *
on the example n-gram corpus.

B. METHOD WITH RESTRICTION ON QUERIES
The naïve way of building the result set for an arbitrary
wildcard query on the corpus would be to iterate through the
whole corpus and for each n-gram check whether it is a match.
But as the corpus is quite large we need a better approach.

Let’s try to solve a simple problem where our set Q contains
just queries where Qp has no wildcards. Obviously R will
contain at most one n-gram as this is in fact a membership
query. To speed up answering to that type of queries let’s store
the n-grams in a prefix tree [6] as shown in the figure 2.
Answering a query is then just a matter of traversing this prefix
tree from top to bottom.

Figure 2: Example corpus stored in prefix tree.

Let’s extend our set Q with those queries where Qp can
contain wildcards but with some restrictions. We will split the
set of positions from Qp in two sets according to a property
whether there is a word or a wildcard on a specified position.
We call these sets word positions W(Qp) and wildcard
positions C(Qp). W(Qp) is defined as {i; 1 ≤ i ≤ D and
isWord(Qp[i]) }, C(Qp) is defined as {i; 1 ≤ i ≤ D and
isWildcard(Qp[i]) }. Define a simple query as query where in
its pattern Qp all the word positions appear earlier than any of
the wildcard ones. In other words max(W(Qp)) < min(C(Qp)).

The fact that all the n-grams are stored in prefix tree allows us
to use simple tree traversal as we did before until we hit a
wildcard in pattern Qp. We can realize that all of the n-grams
present in the sub-tree rooted at node where we are currently
located are exclusively contained in the result set R. We can
therefore easily generalize searching procedure and extend our
set Q. But Q still contains just a small part of all possible
wildcard query patterns.

C. EXTENDING THE SET OF QUERY PATTERNS
Define a permutation of a n-gram as a permutation of words
in its sequence – we will write permutations in one-line
notation. Let’s permute all the n-grams from the corpus
according to some specified permutation π. We then execute
an arbitrary simple query on this modified corpus and get a set
of results R’. If we permute members of R’ back to their
original form we find that R’ contains same n-grams as if we
would execute a query with pattern Qp’ over original corpus
(corpus where n-grams are not permuted). We can get the
pattern Qp’ just by permuting pattern Qp according to
permutation inv(π) where inv(π) is inverse of permutation π. Of
course pattern Qp’ does not necessarily correspond to a query
from the simple query set Q. That is why we cannot execute it
in the same efficient way as we can execute simple queries.
But we get an important intuition.

If we start with non-simple query pattern Qc and transform it
to simple query pattern Qs with some permutation σ and then
make a query on a collection in which all of the n-grams from
the corpus are permuted by σ, then querying with pattern Qs is
possible in the simple tree traversal way as presented before;
the results in set R are same as they would be if we made a
query with pattern Qc on the original collection (the results
from R just have to be permuted with inv(σ) to get the original
version of resulting n-grams). So we have a procedure to
efficiently find the result set for all kinds of wildcard queries.
Each query just has to be transformed to simple query by
transforming its pattern Qp to simple one with some
permutation σ and all the n-grams from the corpus have to be
permuted by the same permutation σ. On matching stage we
can act as if we are dealing with a simple query and efficiently
find the set R whose members have to be permuted with inv(σ)
to get the resulting n-grams back in their original form.

D. TRANSFORMING NON-SIMPLE PATTERN TO
SIMPLE ONE
Finding σ to transform Qc to Qs is an easy task. What makes
the query pattern non-simple is the fact that there exists a
wildcard position which is later followed by a word position.
Permutation σ just has to map all the words in front of the
wildcards. The catch is that if we want to use an efficient
matching method also all the n-grams have to be permuted by
σ and stored in an auxiliary collection. That is why we have
to find the minimum set of permutations M so that for each
possible wildcard query pattern there exists a permutation
from M that transforms it to simple pattern. Size of M has to be
as small as possible because each of permutations form M will
have a corresponding auxiliary collection of all the n-grams
from the corpus permuted according to it. The fact that actual
order of words in permuted pattern is irrelevant as long as they
are all in front of the wildcards helps us to significantly
decrease the upper bound on the number of permutations as
there is usually more than one candidate permutation σ that
satisfies this transformation property. More formally we have
to find such set of permutations M, that for each possible
query pattern Qp there exists such a permutation σ from M that

 3

im(σ(W(Qp))) = {1,…,|W(Qp)|} and im(σ(C(Qp))) = {|W(Qp)|
+ 1,…,D}. It’s quite obvious that |M| can be bounded by the
number of different sets W(Qp). Since size of the set W(Qp) is
limited with maximum degree of a pattern Qp (in our case D
= 5) we only have 2^5 different possible sets. The upper
bound on |M| is therefore 32 but can be improved even further.

E. MINIMUM SET OF PERMUTATIONS
Let M(d) represent a subset of M containing minimum number
of permutations required to transform any wildcard query
pattern Qp where |W(Qp)| = d to simple one. We will build the
set M inductively on d.

For d = 1 clearly |M(d)| = D as for each possible word
position a permutation that maps it to 1 is needed.When
constructing M(d) where d > 1 we can find for each possible
set W(Qp) of size d the permutation from M(d – 1) that maps d
– 1 elements of its elements to {1,…,d – 1} and then extend
this permutation to map the remaining element to d.

Figure 3: Part of example corpus stored in prefix tree and
permuted by σ = (2 1 3).

We can notice that the size of M(d) is the same as the number
of different possible sets W(Qp) of size d which equals to
C(D,d) (where C(n,k) represents a combination). As C(n,k) is
maximal when k equals n / 2 (integer division) we can set the
lower bound on size of |M| to C(D,D / 2) as there are C(D,D /
2) permutations in set M(D / 2). But can we always construct
M so that its size actually matches the lower bound? It turns
out we can, as long as we reuse (and extend) all the
permutations from M(d – 1) when constructing M(d) – where
|M(d – 1)| ≤ |M(d)|. As all the permutations from M(d – 1) are
also included (in the extended form) in M(d) there always
exists a permutation from M(d) which transform a pattern with
|W(Qp)| = d - 1 to simple one. It implies that permutations
from the set M(D / 2) are enough to correctly transform all
possible W(Qp) where |W(Qp)| ≤ D / 2. We can combine the
permutations from M(D / 2) with those from M(d) where D / 2
< d to construct the minimum set M with C(D,D / 2) elements.
For indexing our corpus the minimum set of permutations
contains exactly 10 different permutations (in appendix), each
of which has its corresponding auxiliary collection with n-
grams permuted according to it. Therefore our index is 10
times as large as the corpus.

4 INDEX CONSTRUCTION
N-grams from the corpus are stored in 10 different collections.
Each collection has a corresponding permutation according to
which n-grams stored in it are permuted. Collections are
implemented as prefix trees so that finding the result set can be
done in a simple and efficient way as described before.
Another advantage of prefix tree is that it can be fairly
efficiently compressed once it is built. We are building
collections sequentially; building procedure is divided in two
stages. In first stage n-grams from the corpus are permuted and
sequentially inserted in prefix tree which is stored in primary
memory. When built, prefix tree takes about 240 GB of
memory as it is not efficiently represented for a sake of faster
insertion. On the second stage tree is compressed and in the
end it takes only about 30 GB of memory. As compression we
mean that nodes, edges and words are represented in a more
succinct way which slightly reduces speed efficiency when
traversing the tree. At the end the whole index takes 280 GB
and is loaded in primary memory to achieve fastest result
retrieval. Index construction took around 24 hours on a server
machine with 512 GB of RAM.

5 EFFICIENCY
When the query pattern Qp is known it is transformed to
simple query pattern Qs by the right permutation. Then the
collection (prefix tree) which corresponds to this permutation
is identified. Once we have the right prefix tree finding the
result set is just a matter of simple tree traversal. Results can
be served all at once or by iteratively calling getNextResult()
function. While the first match to given query pattern is found
instantaneously due to straight-forward matching procedure,
the system is capable to retrieve “just” 10^5 matches per
second. The slowdown of its performance lies in succinct
representation which results in slower tree traversal due to the
complex structure of data.

6 CONCLUSION
We have described a novel indexing schema whose main
advantages are full wildcard query support, interactive
querying and speed efficiency. Even though it is currently a
static indexing approach it can be extended to a dynamic
version quite easily. Its usage is not limited just on word n-
grams.

REFERENCES
[1] Thorsten Brants and Alex Franz. 2006. Web 1T 5-gram

corpus version 1. Technical report, Google Research.
[2] S. Evert. 2010. Google web 1t 5-grams made easy (but

not for the computer). In Proceedings of the NAACL
HLT 2010 Sixth Web as Corpus Workshop, WAC-6 ’10,
pages 32–40.

[3] Ceylan, H., and Mihalcea, R. 2011. An efficient indexer
for large n-gram corpora. In Proceedings of the 49th
Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies (ACL-HLT
2011), System Demonstrations, Portland, OR, USA, pp.

 4

103–8. Stroudsburg, PA: Association for Computational
Linguistics.

[4] T. Hawker, M. Gardiner, and A. Bennetts. 2007.
Practical queries of a massive n-gram database. In
Proceedings of the Australasian Language Technology
Workshop 2007, pages 40–48, Melbourne, Australia.

[5] Michael Flor. 2013. A fast and flexible architecture for
very large word n-gram datasets. Natural Language
Engineering, 19(1), 61-93.

[6] Fredkin, E. 1960. Trie memory. Communications of the
ACM 3(9): 490–9.

APPENDIX

Figure 4: Minimum set of permutations for indexing n-grams
with degree up to 5 used in our index. Permutations are written
in one-line notation.

	1 INTRODUCTION
	2 Related work
	3 INDEXING APPROACH
	a. Definition
	b. Method with restriction on queries
	c. Extending the set of query patterns
	d. Transforming non-simple pattern to simple one
	e. Minimum set of permutations

	4 Index construction
	5 EFFICIENCY
	6 Conclusion
	References
	Appendix

