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ABSTRACT 
 

This paper presents an efficient indexing technique suitable for 
indexing large n-gram collections with an emphasis on full 
wildcard query support and speed efficiency. Further we used 
this technique in building the n-gram search engine, on top of 
Google’s Web 1T 5-gram collection, whose advantages are 
interactive querying and fast result retrieval with tradeoff on 
higher memory consumption. 

1 INTRODUCTION 
In the statistic NLP part of a research project we are using 
Web 1T 5-gram Version 1 corpus contributed by Google Inc. 
[1]. The corpus contains English word n-grams with length 
ranging from unigrams (single word) to five-grams. It contains 
around 4 billion n-grams and takes around 90 GB of memory.  
 
Due to the corpus size we need an efficient indexing method 
which enables interactive full wildcard querying support on the 
data. Query time is our main priority that is why the index is 
kept in primary memory to eliminate disk IO operations. We 
have built our own system which is running on a server 
machine with 512 GB of RAM and has a constant memory 
usage of 280 GB. 

2 RELATED WORK 
There is a variety of different approaches and systems for 
storing and querying large n-gram collections. One class of 
approaches deals with an efficient representation of data in 
terms of memory usage while it usually offers only basic 
membership query.  
 
There are approaches that seek for a tradeoff between memory 
footprint, speed efficiency and query expressiveness. Usually 
these are the combinations of fast in memory indexes of data 
stored on disk, where frequent disk access reduces the 
performance. Intuitive approach to achieve rich querying 
capabilities is to store the collection in a relational database 
and then index the data in desired manner [2], but here speed 
and memory efficiency suffers.  
 
 
 

 

 
 
 
The work presented in [3] is an approach with in memory B+ 
tree index to enable wildcard query support but with limitation 
that wildcards in the query are continuous. Paper [4] describes 
an offline query pre-processing approach where queries are 
stored in nested hash table structure and answers are calculated   
with a  single pass through the corpus. [5] summarizes various 
approaches and presents an efficient storing architecture with 
n-grams stored in an enhanced prefix tree. It also supports 
wildcard queries but not as efficiently as our system does. 
Main advantages of our system are its interactivity (queries 
are answered online), full wildcard query support and very 
fast query result retrieval as searching for n-grams matching 
a given pattern is fast and straight-forward procedure. 

3 INDEXING APPROACH 

A.  DEFINITION 
N-gram is a contiguous sequence of n items. Define the 
number of items in the sequence as a degree of n-gram – for n-
gram Z we mark its degree as deg(Z). As in indexed corpus n-
grams are sequences of words, let Z[i] represent the word that 
appears at position i in the n-gram Z. 
 
Wildcard query is represented with wildcard query pattern 
which is defined as n-gram Qp of a constant degree D. In our 
case D equals 5 which is a maximum degree of n-gram from 
the corpus. For each i = 1 … D, Qp[i] is either a word or a 
wildcard represented as ‘*’ character. Furthermore we define 
two functions: isWord(S[i]) which is true if there is a word at 
position i in given n-gram S and isWildcard(S[i]) which is 
true if there is a wildcard at position i in S. We say that n-
gram X is a member of the result set R of a given wildcard 
query (n-gram X is said to be a match)  if for each i =1 … D 
the following holds: isWord(Qp[i]) and equals(Qp[i],X[i]) or 
isWildcard(Qp[i]) – example is shown on figure 1. If deg(X) < 
D then every such i where deg(X) < i is ignored when 
determining if X is a match or not. 
 
We define a set of supported wildcard queries Q as a set which 
contains only wildcard queries our system currently supports – 
we will need this definition in the next paragraphs. 
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Figure 1: Result set of wildcard query where Qp=* tree * * * 
on the example n-gram corpus.  
 

B.  METHOD WITH RESTRICTION ON QUERIES 
The naïve way of building the result set for an arbitrary 
wildcard query on the corpus would be to iterate through the 
whole corpus and for each n-gram check whether it is a match. 
But as the corpus is quite large we need a better approach. 
 
Let’s try to solve a simple problem where our set Q contains 
just queries where Qp has no wildcards. Obviously R will 
contain at most one n-gram as this is in fact a membership 
query. To speed up answering to that type of queries let’s store 
the n-grams in a prefix tree [6] as shown in the figure 2. 
Answering a query is then just a matter of traversing this prefix 
tree from top to bottom. 
 

 
 
Figure 2: Example corpus stored in prefix tree. 
 
Let’s extend our set Q with those queries where Qp can 
contain wildcards but with some restrictions. We will split the 
set of positions from Qp in two sets according to a property 
whether there is a word or a wildcard on a specified position. 
We call these sets word positions W(Qp) and wildcard 
positions C(Qp). W(Qp) is defined as {i; 1 ≤ i ≤ D and 
isWord(Qp[i]) }, C(Qp) is defined as {i; 1 ≤ i ≤ D and 
isWildcard(Qp[i]) }. Define a simple query as query where in 
its pattern Qp all the word positions appear earlier than any of 
the wildcard ones. In other words max(W(Qp)) < min(C(Qp)).  
 
The fact that all the n-grams are stored in prefix tree allows us 
to use simple tree traversal as we did before until we hit a 
wildcard in pattern Qp. We can realize that all of the n-grams 
present in the sub-tree rooted at node where we are currently 
located are exclusively contained in the result set R. We can 
therefore easily generalize searching procedure and extend our 
set Q. But Q still contains just a small part of all possible 
wildcard query patterns. 

C.  EXTENDING THE SET OF QUERY PATTERNS 
Define a permutation of a n-gram as a permutation of words 
in its sequence – we will write permutations in one-line 
notation. Let’s permute all the n-grams from the corpus 
according to some specified permutation π. We then execute 
an arbitrary simple query on this modified corpus and get a set 
of results R’. If we permute members of R’ back to their 
original form we find that R’ contains same n-grams as if we 
would execute a query with pattern Qp’ over original corpus 
(corpus where n-grams are not permuted). We can get the 
pattern Qp’ just by permuting pattern Qp according to 
permutation inv(π) where inv(π) is inverse of permutation π. Of  
course pattern Qp’ does not necessarily correspond to a query 
from the simple query set Q. That is why we cannot execute it 
in the same efficient way as we can execute simple queries. 
But we get an important intuition. 
 
If we start with non-simple query pattern Qc and transform it 
to simple query pattern Qs with some permutation σ and then 
make a query on a collection in which all of the n-grams from 
the corpus are permuted by σ, then querying with pattern Qs is 
possible in the simple tree traversal way as presented before; 
the results in set R are same as they would be if we made a 
query with pattern Qc on the original collection (the results 
from R just have to be permuted with inv(σ) to get the original 
version of resulting n-grams). So we have a procedure to 
efficiently find the result set for all kinds of wildcard queries. 
Each query just has to be transformed to simple query by 
transforming its pattern Qp to simple one with some 
permutation σ and all the n-grams from the corpus have to be 
permuted by the same permutation σ. On matching stage we 
can act as if we are dealing with a simple query and efficiently 
find the set R whose members have to be permuted with inv(σ) 
to get the resulting n-grams back in their original form. 
 

D.  TRANSFORMING NON-SIMPLE PATTERN TO 
SIMPLE ONE 
Finding σ to transform Qc to Qs is an easy task. What makes 
the query pattern non-simple is the fact that there exists a 
wildcard position which is later followed by a word position. 
Permutation σ just has to map all the words in front of the 
wildcards. The catch is that if we want to use an efficient 
matching method also all the n-grams have to be permuted by 
σ and stored in an auxiliary collection. That is why we have 
to find the minimum set of permutations M so that for each 
possible wildcard query pattern there exists a permutation 
from M that transforms it to simple pattern. Size of M has to be 
as small as possible because each of permutations form M will 
have a corresponding auxiliary collection of all the n-grams 
from the corpus permuted according to it. The fact that actual 
order of words in permuted pattern is irrelevant as long as they 
are all in front of the wildcards helps us to significantly 
decrease the upper bound on the number of permutations as 
there is usually more than one candidate permutation σ that 
satisfies this transformation property. More formally we have 
to find such set of permutations M, that for each possible 
query pattern Qp there exists such a permutation σ from M that 



 3 

im(σ(W(Qp))) = {1,…,|W(Qp)|} and im(σ(C(Qp))) = {|W(Qp)| 
+ 1,…,D}. It’s quite obvious that |M|  can be bounded by the 
number of different sets W(Qp). Since size of  the set W(Qp) is 
limited with maximum degree of a pattern Qp ( in our case D 
= 5) we only have 2^5 different possible sets. The upper 
bound on |M| is therefore 32 but can be improved even further.  
 

E.  MINIMUM SET OF PERMUTATIONS 
Let M(d) represent a subset of M containing minimum number 
of permutations required to transform any wildcard query 
pattern Qp where |W(Qp)| = d to simple one. We will build the 
set M inductively on d.  
 
For d = 1 clearly |M(d)| = D as for each possible word 
position a permutation that maps it to 1 is needed.When 
constructing M(d) where d > 1 we can find for each possible 
set W(Qp) of size d the permutation from M(d – 1) that maps d 
– 1 elements of its elements to {1,…,d – 1} and then extend 
this permutation to map the remaining element to d. 
 

 
Figure 3: Part of example corpus stored in prefix tree and 
permuted by σ = (2 1 3). 
 
We can notice that the size of M(d) is the same as the number 
of different possible sets W(Qp) of size d which equals to 
C(D,d) (where C(n,k) represents a combination). As C(n,k) is 
maximal when k equals n / 2 (integer division) we can set the 
lower bound on size of |M| to C(D,D / 2) as there are C(D,D / 
2) permutations in set M(D / 2). But can we always construct 
M so that its size actually matches the lower bound? It turns 
out we can, as long as we reuse (and extend) all the 
permutations from M(d – 1) when constructing M(d) – where 
|M(d – 1)| ≤ |M(d)|. As all the permutations from M(d – 1) are 
also included (in the extended form) in M(d) there always 
exists a permutation from M(d) which transform a pattern with 
|W(Qp)| = d - 1 to simple one. It implies that permutations 
from the set M(D / 2) are enough to correctly transform all 
possible W(Qp) where |W(Qp)| ≤ D / 2. We can combine the 
permutations from M(D / 2) with those from M(d) where D / 2 
< d to construct the minimum set M with C(D,D / 2) elements. 
For indexing our corpus the minimum set of permutations 
contains exactly 10  different permutations (in appendix), each 
of which has its corresponding auxiliary collection with n-
grams permuted according to it. Therefore our index is 10 
times as large as the corpus. 

4 INDEX CONSTRUCTION 
N-grams from the corpus are stored in 10 different collections. 
Each collection has a corresponding permutation according to 
which n-grams stored in it are permuted. Collections are 
implemented as prefix trees so that finding the result set can be 
done in a simple and efficient way as described before. 
Another advantage of prefix tree is that it can be fairly 
efficiently compressed once it is built. We are building 
collections sequentially; building procedure is divided in two 
stages. In first stage n-grams from the corpus are permuted and 
sequentially inserted in prefix tree which is stored in primary 
memory. When built, prefix tree takes about 240 GB of 
memory as it is not efficiently represented for a sake of faster 
insertion. On the second stage tree is compressed and in the 
end it takes only about 30 GB of memory. As compression we 
mean that nodes, edges and words are represented in a more 
succinct way which slightly reduces speed efficiency when 
traversing the tree. At the end the whole index takes 280 GB 
and is loaded in primary memory to achieve fastest result 
retrieval. Index construction took around 24 hours on a server 
machine with 512 GB of RAM. 

5 EFFICIENCY 
When the query pattern Qp is known it is transformed to 
simple query pattern Qs by the right permutation. Then the 
collection (prefix tree) which corresponds to this permutation 
is identified. Once we have the right prefix tree finding the 
result set is just a matter of simple tree traversal. Results can 
be served all at once or by iteratively calling getNextResult() 
function. While the first match to given query pattern is found 
instantaneously due to straight-forward matching procedure, 
the system is capable to retrieve “just” 10^5 matches per 
second. The slowdown of its performance lies in succinct 
representation which results in slower tree traversal due to the 
complex structure of data. 

6 CONCLUSION 
We have described a novel indexing schema whose main 
advantages are full wildcard query support, interactive 
querying and speed efficiency. Even though it is currently a 
static indexing approach it can be extended to a dynamic 
version quite easily. Its usage is not limited just on word n-
grams. 
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APPENDIX 

 
Figure 4: Minimum set of permutations for indexing n-grams 
with degree up to 5 used in our index. Permutations are written 
in one-line notation. 
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