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ABSTRACT 

The specific challenges in aquaculture today reveal needs and 
problems that must be addressed appropriately and in sync with 
the most recent optimization methods. It is now the time to bring 
the techniques of aquaculture to a new level of development and 
understanding. In that, one must consider the state of the art 
methods of statistics and data mining that permit a deeper insight 
into the aquaculture reality through the collected datasets, either 
from daily data or from sampling to sampling data. This must also 
be tuned to the expert knowledge of the fish farmers, their 
procedures and technology in use today. In this paper we review 
the state of the art of data analytics methodology in aquaculture, 
the data available deriving from the procedures characteristic to 
this business, and propose mathematical models that permit a 
deeper insight on the data. We also address the data unknowns 
and strategies developed that will contribute to the success of the 
business, leading to discover valuable information from the data 
that can be made usable, relevant and actionable. 

Categories and Subject Descriptors 
E.3 Data Structures; I.2 Artificial Intelligence; I.6 Simulation and 
Modelling  

General Terms 
Algorithms, Data Science, Aquaculture 

Keywords 
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1. INTRODUCTION 
Modern research and commercial aquaculture operations have 
begun to adopt new technologies, including computer control 
systems. Aquafarmers realize that by controlling the 
environmental conditions and system inputs (e.g. water, oxygen, 
temperature, feed rate and stocking density), physiological rates of 
cultured species and final process outputs (e.g. ammonia, pH and 
growth) can be regulated [2]. These are exactly the kinds of 
practical measurements that will allow commercial aquaculture 
facilities to optimize their efficiency by reducing labor and utility 
costs. Anticipated benefits for aquaculture process control and 
artificial intelligence systems are: increased process efficiency; 
reduced energy and water losses; reduced labor costs; reduced 
stress and disease; improved accounting; improved understanding 
of the process.  

The technologies and implementation of the technologies 
necessary for the development of computer intelligent 
management systems come in a wide variety [8] and enhanced 
commercial aquaculture production [3]. Today’s artificial 
intelligence (AI) systems offer the aquaculturist a proven 
methodology for implementing management systems that are both 

intuitive and inferential. The major factors to consider in the 
design and purchase of process control and artificial intelligence 
software are functionality/intuitiveness, compatibility, flexibility, 
upgrade path, hardware requirements and cost. Of these, 
intuitiveness and compatibility are the most important. The 
software must be intuitive to the user or they will not use the 
system. Regarding compatibility, the manufacturer should be 
congruent with open architecture designs so that the chosen 
software is interchangeable with other software products. 

 
Figure 1. Dynamical plots developed for the project aquaSmart, available 
through a public interface where the fish farmers can upload their data and 
do a preliminary analysis and visualization.  

The models presented in this paper were developed in the context 
of the EU project aquaSmart [1]. This project aims enhancing the 
innovation capacity within the aquaculture sector, by helping 
companies to transform captured data into knowledge and use this 
knowledge to dramatically improve performance. In particular, 
the tools constructed in that context (illustrated in Figure 1) serve 
the aquafarmers to evaluate feed performance, considering 
important factors such as the water temperature and average fish 
weight, but also underlying factors such as the oxygen level. 

2. UNIQUE CHALLENGES  
It is well known that the production in aquaculture has specific 
features and objectives associated with it. When talking about the 
adaptation of existing technology, the features important to the 
production in aquaculture come from weather prediction. These 
are the oxygen levels and water temperature, which are very 
specific to this activity. The tasks in fish farming carry several 
uncertainties – often expressed by measurements or even 
evaluations – that permit further optimization [9]. A classic 
example is the aim for a better control on the food loss and food 
quality. A contribution of data mining in this context would be of 
interest to the aquafarming industry, saving or relocating 
resources.   

An important variable that remains undetermined during the 
complete production pipeline is the exact number of fish. A 
margin of up to 10% of number of fries is added to the initial 
production at time t=0 due to uncertainty of number of deaths in 
the transport. That means that we already have a maximum of 
10% more fish than our estimations (assuming that no fries die 
during transport or adaptation at t=0). Other than that we can only 



have less fish than we estimated due to the lost fish because of 
unknown reasons. This is already an open problem at the level of 
the bounds for total amount of harvested fish and the description 
of best-case scenario and worst-case scenario. This represents a 
big lack of knowledge about production. In fact, the unknown 
number of fish until the end of the production is important for the 
amount of food given and, consequently, for the resources spent. 

Feed composition has also a large impact on the growth of 
animals, particularly marine fish. Quantitative dynamic models 
exist to predict the growth and body composition of marine fish 
for a given feed composition over a timespan of several months 
[7]. The model takes into consideration the effects of 
environmental factors, particularly temperature, on growth, and it 
incorporates detailed kinetics describing the main metabolic 
processes (protein, lipid, and central metabolism) known to play 
major roles in growth and body composition. That showed that 
multiscale models in biology can yield reasonable and useful 
results. The model predictions are reliable over several timescales 
and in the presence of strong temperature fluctuations, which are 
crucial factors for modeling marine organism growth.  

3. UNKNOWNS IN THE DATA 
It is curious that the underlying problems with the data unknowns 
in aquaculture represent a problem of large dimensions for the 
industry of aquaculture, in which the production is 
straightforward. In fact, it is not known at any time in production, 
the exact number of fish in production, and therefore it is not 
possible to calculate with exactness the amount of food needed to 
support an appropriate growth. Furthermore, there are many 
conditionings in the progress of the production that must be taken 
into account and are hard to measure with the existing and 
available technology. In that, it is important to describe some of 
the features of the data including an assessment on its quality and 
measures to overcome obstacles to the analysis. 

The input and output variables of the dataset are classified as: 
numerical and categorical. Numerical variables can be: continuous 
measured quantities expressed as a float (e.g. ‘av. weight’); 
discrete quantities expressed as an integer (e.g. ‘number of fish’). 
Categorical variables can be: regular categorical data including 
non-ordered classes (e.g. species Bream/Bass); or ordinal classes 
that can be ordered in levels (e.g. estimations poor/fair/good). 
From the variables that can be measured it is important to 
distinguish between: (i) variables that do not change over time, 
often identifying population attributes (e.g. identifications such as 
‘year’ or ‘hatchery’); (ii) variables that can change over time but 
do not change within a sampling period (e.g. ‘batch’); (iii) 
variables that change daily, taken into account when samplings 
occur (e.g. ‘average weight’). 

Table 1. Classification of values according to time dependence.  

change in time? direct calculated derived 

yes water temp. FCR, SFR av. weight 

no identification av. weight at t=0  hatchery 

Essentially we have four types of input data according to the 
impact they assure: (1) identification data that permits the fish 
farmer to manage the production and correctly identify the fish; 
(2) Daily data that is provided by the fish farmers resulting from 
their everyday data input (e.g. ‘date’, ‘av. wt.’, ‘actual feed’, etc.); 
(3) Sampling data, collected at predetermined points of the fish 
growth timeline, to confirm the model values and make the 

appropriate adjustments; (4) Life To Date (LTD) cumulative data 
that is calculated from the time when the fish enters the net as a 
fry to the date of data collection, and will last until the date of the 
harvest. 

The identification data in input (1) is rather unspecific, as we 
cannot at this date in time identify the fish one by one as it is done 
in other animal farming such as cows and pigs. The data in this 
input category is distinguished between the group of production 
indicating localization - Unit - and the individual production 
series of fish - Batch. There is no further distinction in the 
identification. Batch has to go with Unit. Aquafarmers may have 
different batches in one unit or fish from one batch in many units.   

The daily data in input (2) is recorded by the aquafarmers on a 
daily basis. These data columns follow the development of the 
fish since day one when it enters as a fry. The data inputted 
mostly follows one batch of fish from the beginning till the end of 
the production. One input data can have several units but, for 
purposes of the algorithms used, we consider only the time spent 
in one unit. For some of the algorithms used, the data is split this 
way (some data tables don’t have values in the column ‘harvest’) 
with clear input/output within one unit.  

The sampling data in input (3) serves the aquafarmer to 
improve/fix his/her initial Feed Conversion Ratio (FCR) model 
with real data. This includes features that can be learned by a 
specific set of data. Those features will later be important for the 
algorithms. They often correspond to columns with potential 
effect on the end result. Also, they can influence the production 
(e.g. ‘feeder’). The software will adapt to data and will try to do 
the analysis and prediction from the available data. Note that the 
input will also include data columns unknown to the system and 
optional to the aquafarmer. We cannot predict the relevance of the 
data on those columns (neither their nature) but will consider them 
in the overall global analytics. 

 
Figure 2.  The proposed data cleaning process for aquaculture data, 
including the update of the metadata in the system and user interaction. 
 
The daily data, the sampling data and the LTD data in inputs 2, 3 
and 4 fall into three categories: (i) Direct values, that correspond 
to the direct observation of the aquafarmers on either variables 
values including small errors measured in the field (e.g. sampling 
measures such as average weight) or precise values provided by 
external sources (e.g. water temperature or oxygen level); (ii) 
Calculated values, that are dependent of a number of other 
observed values (e.g. LTD values calculated from the daily data); 
(iii) Derived values – values deriving from previously available 



data (e.g. FCR calculated from the table, given average weight 
and water temperature).   

The original data provided by the aquafarmers has variances/holes 
and is not precise because it is not measured automatically but 
instead entered by human hand (with some exceptions such as 
‘temperature’). Sometimes it is not entered for 1 or 2 days due to 
the bad weather, which complicates the access to the 
measurements and to the units themselves (sometimes this adds 
up to 4 days without entries). Sometimes this is due to intentional 
fasting to readjust features and in that case the data measurements 
stay the same as the ones in the previous fields, just before fasting 
takes place. The major discrepancies should be pushed to the user 
as a compromise. If the data is missing up to a certain threshold, 
the data will be sent back to the user in order to be inputted once 
again after appropriate corrections. The options for the missing 
data problem are to consider it as an error and report it to the user 
requesting the missing data, or consider the average from the 
missing data in the sense of interpolation on a fixed mesh grid. 

4. DATA ANALYTICS IN AQUACULTURE 
Mathematical modeling aims to describe the different aspects of 
the real world, their interaction, and their dynamics through 
mathematics. It constitutes the third pillar of science and 
engineering, achieving the fulfillment of the two more traditional 
disciplines, which are theoretical analysis and experimentation 
[4]. Nowadays, mathematical modeling has a key role also in 
aquaculture. In the following section we will present an overview 
of that. Growth and reproductive modeling of wild and captive 
species is essential to understand how much of food resources an 
organism must consume, and how changes to the resources in an 
ecosystem alter the population sizes [6]. 

The FCR is an important performance indicator to estimate the 
growth of the fish. It is widely used by the aquaculture fish 
farmers in pair with the Specific Feeding Ratio (SFR). Its 
importance follows from the fact that 70% of the production costs 
in aquaculture are assigned to the food given to the fish during 
growth. Some of it will fall through the net and some will be 
spared. The optimization of the feeding of the fish can carry great 
benefits to the economic development of the fish farms. 

Specifically, the FCR permits the aquafarmer to determine how 
efficiently a fish is converting feed into new tissue, defined as 
growth [10]. Recall that the FCR is a ratio that does not have any 
units provided by the formula: 

FCR = dry weight of feed consumed/wet weight of gain 

while the feed conversion efficiency (FCE) is expressed as a 
percentage as follows: 

FCE = 1/FCR × 100 

There seems to be some controversy among aquatic animal 
nutritionists as to which is the proper parameter to measure, but in 
aquaSmart we used FCR (exposing here FCE for completion). 
Moreover, the FCR and FCE are based on dry weight of feed and 
fish gain, as the water in dry pelleted feed is not considered to be 
significant. A typical feed pellet contains about 10% moisture that 
will only slightly improve the FCR and FCE. 

The FCR table allows the fish farmer to assess the amount of food 
to give to the fish according to their average weight and the 
temperature of the water. Each farm has its own FCR table. This 
is an opportunity to create our own table/model by tweaking the 

numbers accordingly. Also specifying the influence of sexual 
maturity and the lack of oxygen, which are done by 
hand/intuition, have features to take in consideration by the math 
model. The FCR models in this paper consider only temperature 
and average weight. 

Each aquaculture entity draws an appropriate FCR table to that 
batch of fish. Higher temperature leads to lower energy spent and 
faster growth, and consequently to a lower FCR. As the fish gets 
bigger, he needs more food to increase his biomass in percentage, 
and thus the FCR grows higher with the increase of the average 
weight. The quality of the food and the size of the pellet size are 
not considered at this point. At high temperatures (above 30 
degrees in the case of bream and bass) low oxygen leads to low 
conversion to biomass. This is one of the hidden variables in the 
model, which should be considered separately at a later stage. One 
of the possibilities would be to penalize the FCR tables for the 
lack of oxygen. The other variable is the high reproduction of the 
fish in low temperatures and high average weight, which highly 
affects the growth of the fish. Recall that the Economic FCR is the 
real FCR index following from the quotient between food given to 
the fish and the fish biomass.  When the temperature is too high or 
too low we should ignore the data that is filled in with zeros and 
considered empirical data. 

In the following we present the plots of the models for the three 
fish farms in AquaSmart. It includes 3 fish farms. 

 
Figure 3. Company A: Real data (on the left) and FCR model (on the 
right) for the bream production. 

 

Figure 4. Company B: Real data (on the left) and FCR model (on the 
right) for the bream production. 

  
Figure 5. Company C: Real data (on the left) and FCR model (on the 
right) for the bream production. 

The model (on the right) produced based on the sample data (on 
the left) serves as a base of comparison with the historical data 
provided by a particular fish farm. Thus, with the new real data 
getting in our system, the fish farmer can compare it with the 



model and make an evaluation on the progress of the production. 
These models complement and confirm the expert knowledge: the 
high values on the right correspond to high fish reproduction in 
cold water temperatures and high average weight values. On the 
other hand, high temperatures represent low levels of oxygen 
which request higher feeding rate to maintain and increase the 
growth rate.  

The big number of peaks in the real data, plotted on the left, 
correspond to the real values. Typically the input data can be seen 
within a grid. The following images show the grid view of both 
the real data (on the left) and the FCR model (on the right) for the 
company C. 

 
Figure 6.  The grid view of both the real data (on the left) and the FCR 
model (on the right) for the company C. 

We then use least squares method to interpolate the missing 
values including all non-peak values as those interpolated values. 
It does so by approximate the solution of overdetermined systems. 
The average weight must be represented using specific values that 
are important in the fish production decision making, and 
eventually distinct from fish farm to fish farm. Thus we consider a 
second interpolation to produce a final FCR table that is consistent 
with the systems in use by the fish farms. The nearest neighbours 
algorithm is used here to find the values outside the area [5]. That 
permits us to consider the complete table of measurements in line 
with the sample data available and the missing values calculated 
for the area inside the region. 

5. CONCLUSIONS  
The challenges of aquaculture for data analytics are very specific 
in the field and must be addressed with the appropriate 
methodology and technology, in tune with the expertise of the fish 
farmers. The uncertainty of measures, such as the number of fish 
until the time of harvest, derives in variances that do not permit a 
complete accuracy of some of the calculations. This is particularly 
important to some of the available tools to monitor the business, 
such as the feed conversion rate tables in use by the fish farmers 
to optimize the production costs.  

The mathematical models developed in the aquaSmart project and 
discussed in this paper aim to contribute to the improvement of 
the aquaculture procedures, providing a deeper insight on the 
information retained in the collected data, using state-of-the-art 
methods of data mining in line with the expert knowledge of the 
field transferred to the metadata in the data store.  

Moreover, the statistical analysis of the results permit a clearer 
visualization of the important features in the data that can boost 
the production and optimize the processes related to it. That will 
enable classification and forecast based on the analytics of the 
available data.  

In that, future work includes the production of guidelines 
validated by end-users in order to facilitate the application of 
further advanced learning methods in aquaculture. 
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