Modeling Probability of Default and Credit Limits
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ABSTRACT

Creditors carry the risk of their clients not meeting their
debt obligations. In the literature, these events are often
referred to as default events. These can be modeled for each
company through a probability of default (PD). Measures
can be taken to limit the default risk: in this paper we fo-
cused on credit limit. Firstly, we predict PD of a company
using a logistic regression model, based on publicly available
financial data. Secondly, we effectively find an optimal port-
folio under risk aversion constraints and show how variation
of inputs affects the results.

Categories and Subject Descriptors
Mathematics of computing [Mathematical optimization):

[Linear programming, Convex optimization]|; Computing method-

ologies [Machine learning]: [Supervised learning by re-
gression]

Keywords
PD model, logit, credit limit model, portfolio optimization,
linear programming, risk management

1. INTRODUCTION

Payment defaults represent a key default risk (also credit
risk) to creditors. Creditors can limit their risk by either
insuring their claims or taking preventative measures before
extending a credit. Standard tools to measure default risk
include different kinds of credit ratings.

Our goal was to create a model that predicts a company’s
probability of default (PD) and provides credit limit sugges-
tions based on the computed PD. One of our constraints
was that the underlying PD model be simple and easy to
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understand. For credit limits, we implemented a linear pro-
gramming based approach [5] which provides portfolio opti-
mization with risk aversion constraints.

This paper presents the workflow and the methodology that
we employed to build a portfolio credit allocation model.
Due to privacy concerns it does not include any expiremental
results and does not discuss any concrete results or aspects
of real data.

The paper is organized as follows. Section 2 provides an
overview of related work. In Section 3 the data that is used
in modeling is described. Section 4 first describes the ap-
proach and computation of the PD model and then presents
the results. Section 5 provides a short theoretical introduc-
tion to portfolio optimization and then presents our compu-
tation and results. Section 6 concludes the paper.

2. RELATED WORK

The Altman Z-score [1] is a widely used credit-scoring model.
It is a linear combination of five commonly used financial in-
dicators and it predicts company’s degree of PD. Both [6]
and [8] argue that Altman Z-score and distance-to-default
([7]) are not appropriate to use in the context of small busi-
nesses. The authors in [6] predict PD using delinquency
data on French small businesses. They propose a scoring
model with an accuracy ratio based solely on information
about the past payment behavior of corporations. Similarly,
[8] forecasts distress in European SME portfolios. They es-
timate the PD using a multi-period logit model. They found
that the larger the SMEs, the less vulnerable they are to the
macroeconomic situation. They also show that SMEs across
Europe are sensitive to the same firm-specific factors.

[2] examine the accuracy of a default forecasting model based
on Merton’s bond pricing model [7] and show that it does
not produce a sufficient statistic for the PD. [11] compare
the predictive accuracy of PD among six data mining meth-
ods. They also present a novel “sorting smoothing method”
for estimating the real PD. Using a simple linear regression,
they show that artificial neural networks produce the best
forecasting model. [3] used the Merton model to show that,
on contrary to what theory suggests, the difference in re-
turns between high and low PD stock is negative and that



returns almost monotonically decrease as the PD increases.
However, they found a positive relationship systematic de-
fault risk exposure and returns.

On the problem of portfolio optimization, [9] showed that
Conditional Value at Risk minimization with a minimum
expected return can be computed using linear programming
techniques. [5] built on this idea and showed that alterna-
tively, one can maximize returns while not allowing large
risks.

3. DATA

The dataset that we used covers several thousand companies
from several European countries. Data for each company
consists of two parts: financial data and trading data.

Financial data corresponds to publicly available data - bal-
ance sheets and income statements of a company.

Trading data consists of private information on trades be-
tween our data provider and his clients. It contains monthly
data about the sum of trades, outstanding debts, disputed
claims and delayed payments. The data is available for years
between January 2010 and June 2016.

4. PD MODEL

All creditors carry the risk of their clients not paying the
bills. We can be quite certain that some clients will not
pay, however, we have difficulties identifying those clients.
Hence, our first task was to compute the probability of de-
fault for each client company. The end model should also
be simple and easy (intuitive) for domain experts to under-
stand.

Default can be defined in multiple ways, considering the
available data and how strict we want our model to be. Do
we consider it a default if the client is only one day late
on payments? Or do we let them be 30, 45, 60 days late
before taking action? Are we going to consider a client de-
faulted if he owes 10€7 What if the client didn’t pay one
bill but has been paying all the bills after? We are required
to make a judgment call and choose a definition that meets
the creditor’s needs best.

As soon as a client defaulted we removed it from the dataset.
Meaning, each client can only default once and after that we
assume there was no more trading done with them.

There were some companies that were already defaulted at
the beginning of the time-span of our dataset. We removed
these companies from the dataset since they provide no use-
ful information. We also filtered out clients with low sales
since their financial data can be very unreliable and their
impact on our model is big compared to the trading volume
that they generate.

Due to the constraint that the model should be simple and
easy to understand we chose to model the PD with logistic
regression.

From the available financial data we calculated 45 financial
indicators for each company that cover aspects of solvency,
liquidity, debt, profitability and operative effectiveness sta-
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Figure 1: Bins and WOE on simulated data. The greater
the value of the simulated data the greater the evidence that
a company is 'good’.

tus of a company. We transformed each financial indicator
vector into a feature vector by binning and assigning Weight
of Evidence (WOE) [10] to it. The idea is as follows: create
n bins in range from min to maxz indicator value and assign
each company to the corresponding bin. Then count the
number of ’bad’ (defaulted) and ’good’ companies in each
bin. Then assign WOE to a bin as

P(company = good)
P(company = bad)

Since WOE scores will be used as inputs to a linear model,
they should be a monotonous function over bins, meaning,
the higher the financial indicator value the better the com-
pany is (if WOE is increasing) or the higher the indicator the
worse the company is (if WOE is decreasing). In Figure 1
we show an example of binning and WOE transformation
on simulated data.

Thus, we obtained 40 out of 45 features. Another feature
was the size of the company (based on income) and four of
them were country features (dummy variables - one for each
country).

As described above, we mapped “raw” features into WOE
features:

(z1, 2, ...) = (woe(x1), woe(z2)..)
PD of a company is then predicted through logistic distri-

bution function:

1

F(z) =5 T exp—(BotB1-woe(e1)+Ba2 woe(w2) T+ Bn-woe(@n))

where (3; denotes linear regression coefficients.

4.1 Computation

Since we have the response variable observations on monthly
level, we interpolated features to obtain the same frequency
of explanatory variables. We also took into account offset of
the financial and trading data: financial data is only made
available sometime around June each year for the previous
year (e.g. in June 2016 we only know financial statuses of
2015).
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Figure 2: Missed trading volume vs. disputed claims on
simulated data. The info box marks 6%-level: if trading was
stopped with the worst 6% companies, approx. 7.5 could be
saved on disputed claims and 6.5 - margin profit would be
lost on trading volume. The figure is included for illustrative
purposes and is not based on real data for privacy concerns.

We then filtered out features that:

e had high percentage of missing values (We kept thresh-
old as a parameter. in this paper, threshold of 0.7 was
used.)

e were highly correlated (In this paper, threshold of 0.9
was used).

After that, 27 features were left in our feature set.

We used Matlab for computation. The data was trained
on 42 months and tested on 19 months. Two models were
trained: standard logistic model and stepwise logistic model.
In stepwise regression, explanatory variables are added to a
model by an automatic procedure [4]. Regression coefficients
are estimated by maximum likelihood estimation.

4.2 Results

Test data consisted of 20% of the data (not used in training).
There were 16 features chosen in stepwise model. Both of
the models have 0 p-values and return very similar results
in predicted values.

We evaluated models by comparing the amount of disputed
claims (true negatives) to the amount of missed trading
volume (false positives) given ceased trading with compa-
nies with PD exceeding some threshold (Figure 2). Note,
that expenses based on missed trading volume cannot be
directly compared to disputed claims; disputed claims are a
direct expense, whereas missed trading volume number con-
sist largely of expenses (that a company in that case did
not have). Hence, one needs to multiply the trading volume
with company’s (average) margin to obtain actual opportu-
nity costs.

S. CREDIT LIMITS MODEL

Naturally, a question arises once we identify risky clients:
how to handle them? Client should have set a credit limit,

but how to set the limit? If the limit is to high, the client
might not be able to pay the bills, but if the limit is too low,
profit is lost on trading volume. The model that we created
is inspired by [5], is based on PD calculation presented in
first part of this paper and takes into account the level of
risk that creditor is willing to take.

Let us introduce some standard financial risk-related terms.
Value at Risk (VaR) is an upper percentile of loss distribu-
tion. Probability level is denoted as a. E.g. 95% — VaR of
1,000, 000€ means that there is a 0.05 probability that loss
will exceed 1,000,000€. Conditional Value at Risk (CVaR)
is the conditional expected loss under the condition that it
exceeds VaR. CVaR at a = 95% level is the expected loss
in the 5% worst scenarios. w denotes the maximum allowed
CVaR of the portfolio at level a.

We will denote loss associated with the portfolio x and ran-
dom vector y (with density p(y)) as f(z,y); CVaR will be
noted as ¢a (), which is given by

bule) = (1) [

f(z,y)>VaRa

J(z,y)p(y)dy.

It has been established [9] that ¢o(x) can be computed by
minimizing the following function:

Fa(z,0) = ¢+ (1—a)" / max{ f(z,y) — ¢, 0}p(y)dy,

yERN
and that the value ¢ which attains the minimum is equal to
VaR,.

Finding credit allocations x € X that maximize the expected
profit under CVaR is equivalent to the following optimiza-
tion problem [5]:

min — R(x)
zeX,(ER (1)

subject to  Fo(z,() <w

where R(z) is the expected profit and the set X is given by
a set of box constraints (lower and upper bounds on each
component of x).

5.1 Computation

By using the PDs from the first part of the paper, we can
simulate the default events and compute several random sce-
narios for our portfolio. Since each company is assigned
a probability of default we can generate random scenarios
(where certain companies default) over the full portfolio by
sampling from independent (with different weight) Bernoulli
random variables.

By generating a set of sample scenario vectors yi,...,yJs
with their corresponding probabilities 71, ..., 7 we can ap-
proximate F(z,y) by a finite sum:

J
Fo(,0) =C+ (1 =) Y mmax{f(z,y) — (,0}

j=1



the constraints in (1) can be reduced to a system of linear
constraints:

J
(+(1-a)' ) mz <w (2)

flz,y5) —¢—2; <0,

In our case, the expected profit is

2, >0, j=1,....J, CE€R (3)

R(z) = (1 —pd) - - margin — pd - x.

As for PD modeling, we used Matlab for computation. We
combined left-side part of constraints from (2) and (3) in a
matrix A; the right-hand side was combined in a vector b.
We also added additional constraints on z, that are specific
to our problem: we set an upper and lower bound (ub and
Ib correspondingly) to the credit limit.

We then have to solve linear program:

Ax <b

min —R(x) Ib<az<ub

x

such that {

5.2 Results

Our method provides an optimal portfolio based on «, w,
margin, PDs,; credit limit upper- and lower bounds. By op-
timal portfolio we mean monthly credit limit for each com-
pany, which takes value between the provided credit limit
bounds. In Figure 3 we present some scatter-plots based on
results; the default values used for these graphs are a = 0.95,
Ib =0, ub = maz trading volume (based on historical data)
and margin = 0.01. Most companies get either zero or max-
imum credit approved; there are only some companies the
get part of the max credit approved. In 3b we decreased
w by a factor of 10. This is a lot stricter constraint and
consequently there are more companies that get zero credit
approved and many companies that get only a part of max
credit approved. In 3c we increased margin from 0.01 to 0.1.
In practice this means, that the credit-giver is making profit
on trading volume. In 3d, we moved credit lower bound
from zero to 0.1 - ub. This makes the PD threshold stricter.

6. CONCLUSION

We presented a logit model based on weight of evidence fea-
tures to predict a company’s probability of default. Standard
and stepwise methods were used to train the data. Both
methods provide similar results.

In second part of the paper we introduce an efficient portfolio
optimization technique that was used to determine credit
limits for creditor’s clients. We presented the results and
showed how variation of inputs impacts the results.
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