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ABSTRACT
This paper describes a method for automatic transportation
mode detection based on smartphone sensors. Our approach
is designed to work in real-time as it only requires 5s of sen-
sor readings for the detection. Because we used accelerom-
eter instead of GPS signal it uses less battery power and is
therefore more user and phone-friendly. For the mode detec-
tion we use multiple support vector machine models which
enable us distinguishing between multiple modes (bus, train,
car). Before the classification, raw measurements are pre-
processed in order to cancel out the constant acceleration
that is caused by the force of gravity. The results of the
paper are promising and are based on the collected training
data from approximately 20 hours of driving on trains and
public buses in Ljubljana.
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1. INTRODUCTION
Nowadays most smartphones have built-in sensors that mea-
sure motion, acceleration, orientation, and various other en-
vironmental conditions with quite high precision and sam-
pling frequency. This can be used with great success in
everyday challenges, for example tracking and routing ap-
plications. It has been proven that smartphone sensors are
useful in monitoring three-dimensional device movement and
positioning [1], and also user’s activity detection, which is
also in the domain of this paper.

Mobile operating system developers are aware of such ap-
plications, therefore their APIs include activity recognition
packages. However, they detect only a few modes - still,
walking, running, cycling, and in vehicle. Such coarse-grained
classification is not enough for tracking and routing pur-
poses, specially in use-cases for urban environments, where

public transportation with buses and trains can be a good
alternative to private vehicles.

As the main smartphone APIs already support fine-grained
classification of non-motorized forms of transportation [2,
3], we focused on distinguishing means of motorized trans-
port, specifically cars and buses, as the majority of passen-
ger traffic in Ljubljana represent cars and buses. Trains and
motorbikes are not that common, whereas subway and tram
infrastructures do not exist. Our goal is to recognize each
mode of transportation in near real time while mobile phone
users are traveling.

2. RELATED WORK
Ever since smartphones appeared and gained accessibility
there has been a lot of research activity for their usage in
user activity recognition and transportation mode detection.
While the first attempts to recognize user activity were done
before smartphones, the real effort in that direction started
with the development of mobile phones having built-in sen-
sors [7]. Besides GPS sensors, also GSM triangulation and
local area wireless technology (Wi-Fi) can be employed for
the purpose of transportation mode detection. However its
accuracy is relatively low compared to GPS, therefore we
deem these out of scope of this paper[8].

Latest state of the art research is focused on transporta-
tion mode detection based on GPS signal and/or accelerom-
eter data. Approaches that rely solely on GPS trajectories
require GPS signal of high-quality, whereas phones GPS
receiver is generally severely shielded during daily activi-
ties [10]. This may occur during travel underground, inside
stations, or even when user is not sufficiently close to a win-
dow when traveling in a vehicle [5], and results in loss of
positioning information. Another known issue when using
GPS signal on mobile device is high power consumption [5],
which is especially not pleasing in the case of longer com-
mutes. Both of these two issues suggest that the accelerom-
eter sensor is more appropriate for activity detection.

Another advantage of using accelerometer data over GPS
signal is that it does not require additional external data.
Many researches using GPS data used external data, such
as GIS data on bus stations, bus routes and railway lines [9].



Figure 1: Amplitudes of raw accelerometer data for
different means of motorized transportation.

3. TRANSPORTATION MODE DETECTION
For the purpose of collecting accelerometer data we extended
the GPS tracking mobile application with the accelerometer
measuring ability. The phone sensor measures acceleration
forces in m/s2 for all of the three physical axes (x, y, z). The
sampling rate is 100Hz (1 measurement every 10 ms). To
increase the diversity of the training data-set, measurements
were acquired in multiple ways:

• Person is collecting data while traveling by the car and
stops the collection at the destination.

• Person is collecting data while traveling by the bus and
stops the collection on exit.

• Person is traveling by the train and is collecting data
until the arrival to the final destination

• Person is collecting data while driving a motorbike and
stops the collection at the destination.

We collected approximately 20 hours of travelling measure-
ments, with the travel modes distributed as follows: car −
57%, bus−32%, train−11%, motorbike−0.1%. Amplitudes
of the raw accelerometer data are shown in Figure 1.

3.1 Preprocessing
In order to reduce the computation time and to have faster
response time for real-time classification, we split the recorded
accelerometer signal into smaller pieces that do not exceed
5s timewise. This enables us to work on chunks of record
that span only through 5s or less. This additionally pre-
serves battery life, saves space, and reduces usage of mobile
data.

Acceleration measurements are correlated with the orien-
tation of the phone in 3D space, as gravity is measured to-
gether with the dynamic acceleration caused by phone move-
ments. Thus we have to be able to separate the constant
acceleration caused by the gravity and the dynamic part of
the acceleration.

Figure 2: Amplitudes of preprocessed accelerometer
data for different means of motorized transporta-
tion.

The gravity estimation algorithm works as follows: for a
chosen sampling interval (in our case 1s), obtain an esti-
mate of the gravity component on each axis by averaging
all measurements in the interval on that axis [6]. After ob-
taining the estimates, we subtracted the gravity component
from all of the entries on corresponding axis in given time
interval. Through this we obtained only the dynamic ac-
celeration component of the signal. Amplitudes of dynamic
accelerometer signal are shown in Figure 2.

3.2 Classification
After preprocessing the accelerometer readings we extracted
features for the classification process. We used mean, vari-
ance, skewness, 5th, and 95th percentile of acceleration data
on all three axes. We also split the acceleration into posi-
tive part, which indicates that the velocity of movement in
that direction is increasing, and negative part, which indi-
cates that the velocity is decreasing, and calculated the same
statistics on these two parts.

We used support vector machine (SVM) classifier as it was
previously successfully used in similar work [8]. The imple-
mentation was SVM classifier (SVC) from QMiner package.
QMiner is an open source analytics platform for performing
large scale data analysis written in C++ and exposed via a
Javascript API [4].

First we focused on the binary classification of car and bus
transportation versus the rest. We trained binary classi-
fiers for each of the labels in one against the rest manner.
That means that examples labled with this particular label
represented positive examples, whereas all other examples,
regardless of class represented negative examples. However,
we also did one against one classification for each pair of
labels. That means that examples of one class were marked
as positive, examples of another class were marked as nega-
tive, and the rest of the learning set was filtered out. Later,
we extended this to support multi-class classification. For
multi-class classification we used binary models and com-
bined their predictions based on the distance between the



Table 1: Table of all extracted features.
Acceleration data Features
X axis Mean (Total, Acceleration, Deceleration)
Y axis Standard deviation (Total, Acceleration, Deceleration)
Z axis Skewness (Total, Acceleration, Deceleration)
Amplitude 5th percentile (Total, Acceleration, Deceleration)

95th percentile (Total, Acceleration, Deceleration)
Total number of features 60

Table 2: Classification accuracy, precision, recall,
and F1 score for binary classifiers of different trans-
portation modes as results of 10-fold cross valida-
tion.

Accuracy Precision Recall F1 score
Car 0.855 0.852 0.910 0.880
Bus 0.720 0.620 0.694 0.655
Train 0.876 0.726 0.671 0.697

separating hyper plane and the test sample.

4. EVALUATION
Evaluation section is divided into two parts. In the first one
are presented the results of experiments with one against the
rest classification, whereas in the second part we discuss the
results of one against one classification. In both parts we
considered two different scenarios. In the first one we tested
if our approach can recognize a specific transportation mode
from all the others (one-vs-all) or if SVC can distinguish
between two specific modes of transportation (one-vs-one).
In the second, we used previously obtained binary models
to classify to three(3) different classes. Our main focus was
recognizing traveling by cars and buses as these represent
majority of the passenger traffic in Ljubljana and therefore
the majority of our training data.

We measured performance of the models with classification
accuracy, precision and recall. Furthermore, we estimated
a harmonic mean of precision and recall with the F1 score.
We used 10-fold cross validation to tune the parameters of
each binary model.

4.1 One against all
Binary classification (one-vs-all) was done for each of the
three classes (car, bus and train). Classification accuracy,
precision and recall for the most suitable values of parame-
ters are listed in Table 2.

We got the best results (accuracy, precision and recall) for
car travel detection. There was some drop in the perfor-
mance of bus travel detection, and even bigger drop for the
train detection. We assume that the main cause for perfor-
mance drop is smaller training data set for bus and train.
We plan to resolve this with additional data-set collection
as part of the future work.

For the multi-class classification we used binary models from
Table 2. We mapped results into 4 classes (car, bus, train
and UC - unable to classify). If according to the binary
classification, an instance belongs to none of the classes or
more than one, we label it as UC (unable to classify). The

Table 3: Confusion matrix for classification for 3
classes with 10-fold cross-validation.

True\ Pred. Car Bus Train UC
Car 0.818 0.012 0.008 0.162
Bus 0.198 0.219 0.072 0.511
Train 0.118 0.042 0.344 0.496

Table 4: Classification accuracy, precision, recall,
and F1 score for classification with 3 classifiers with
10-fold cross-validation.

Accuracy Precision Recall F1 score
Car 0.823 0.826 0.818 0.827
Bus 0.725 0.844 0.219 0.347
Train 0.859 0.683 0.181 0.286
Average 0.803 0.784 0.401 0.535

plan behind UC is, that we ask the application providing
accelerometer data for new sample, which can help us re-
classify into the proper class. The results in Table 3 and
Table 4 are not surprising as the majority of cars is classified
as cars and also most of misclassified cars are instances that
belong to either none or more than one class. In contrast
to cars, proportions of correctly classified buses and trains
are smaller than the proportions of UC for these two classes,
which shows that our approach to combining predictions for
multiple classifiers might not be the best.

4.2 One against one
We did similarly for one-vs-one binary classification. Results
of this are shown in Table 5, which shows that cars are
very well distinguishable from trains and vice versa. Buses
are less distinguishable from cars and trains, however the
accuracy and F1 score of all the classifications are still above
0.8.

We used these six binary classifiers for multi-class classifica-
tion. Confusion matrix and accuracy, precision, recall and
F1 score are listed in Tables 6 and 7. Tables show that clas-
sification accuracy, precision, recall and F1 score are higher
than in case of one against all classification. Confusion ma-

Table 5: Accuracy / F1 score for one-vs-one bi-
nary classification. Rows represent positive exam-
ples, whereas columns are negative examples.

Car Bus Train
Car 0.848/0.889 0.943/0.962
Bus 0.856/0.832 0.858/0.896
Train 0.934/0.883 0.815/0.760



Table 6: Confusion matrix for classification for 3
classes with 10-fold cross-validation.

True\ Pred. Car Bus Train
Car 0.893 0.088 0.019
Bus 0.282 0.573 0.145
Train 0.167 0.162 0.671

Table 7: Classification accuracy, precision, recall,
and F1 score with 10-fold cross-validation.

Accuracy Precision Recall F1 score
Car 0.825 0.785 0.893 0.835
Bus 0.787 0.724 0.573 0.640
Train 0.886 0.672 0.671 0.671
Average 0.832 0.727 0.712 0.716

trix shows that nearly 90% of cars is classified correctly,
whereas for buses and trains the percentage of correctly clas-
sified instances drops to 57% and 67% respectively. It also
shows that trains are equally likely to be miss-classified as
cars and the buses. In contrast to trains, buses are more
often miss-classified as cars than trains. In comparison with
one-vs-all multi-class classification, values of recall and F1
score are much higher, whereas accuracy and precision for
these two approaches are comparable.

5. CONCLUSION
In the presented work we showed that it is possible to detect
transportation mode using support vector machine, with
short readings of accelerometer signal. This proves that
near real-time activity detection with fine-grained motorized
transportation modality is possible.

Nonetheless, there are still some issues for the future work.
First one is regarding unbalanced data set as we will have
to collect more data, especially for train and motorbike de-
tection. Secondly, our task will be improving binary clas-
sification regarding buses as this class was most often mis-
classified. However, this might be also caused by our policy
for combining multiple binary classification results, which is
also something we will have to work on.
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