Analyzing raw log files to find execution anomalies

A novel approach to analyzing text-based log files to find changes in the
execution profile of complex IT systems

Viktor Jovanoski
Carvic d.o.o.
Kotnikova 5

Ljubljana, Slovenia

viktor@carvic.si

Mario Karlovéec
Jozef Stefan Institute
Jamova 39
Ljubljana, Slovenia
mario.karlovcec@ijs.si

ABSTRACT

Anomaly detection (a.k.a. outlier detection) is the identifi-
cation of events that do not conform to an expected pattern
in a dataset. When applied to monitoring modern, complex
IT systems, it keeps track of a plethora of incoming data
streams. This paper provides an approach that uses the
lowest and most unstructured source of data related to an
IT system - the raw system log files. Several versions and
parametrizations of basic building blocks will be presented
to show how different types of anomalies can be extracted
from the data. Several experiments on synthetic as well as
real-world data show effectiveness of the algorithm. Spe-
cial care is taken to keep the model and the resulting alerts
interpret-able - since detecting an error without a meaning-
ful explanation about its details is of limited use to end user
(the results need to be actionable).

Keywords
Anomaly detection, Outlier detection, Infrastructure moni-
toring

1. INTRODUCTION

Modern IT systems are getting increasingly complex and
distributed. On-line monitoring of their health is becoming
critical for their normal operation. The data that is being
collected about these systems comes in diverse time series
(numerical, categorical, text), potentially huge in volume
and arriving with different latencies. For instance, complex
systems often expose metrics about their performance such
as number of served requests or size of internal data struc-
tures. One can also monitor systems performance indirectly

Jan Rupnik
Jozef Stefan Institute
Jamova 39
Ljubljana, Slovenia
jan.rupnik@ijs.si

Blaz Fortuna
Jozef Stefan Institute
Jamova 39
Ljubljana, Slovenia
blaz.fortuna@ijs.si

by inspecting CPU load, network load or database communi-
cation patterns. Quality assurance of input and output data
can also be performed, such as the number and the size of
the data records. Spotting unusual behavior of such sys-
tems is crucial and unhandled execution problems can lead
to catastrophic results. The anomalies can be very different
in nature, from abrupt changes that occur within a second
to the gradual decay of performance that is only observable
on a weekly or monthly scale.

Most of the research about anomaly detection has been con-
centrated on outlier detection in numerical time-series (e.g.
financial time series like in [5], time series arising from in-
frastructure monitoring) and discrete-event sequences (e.g.
fraud detection like in [4], cyber-security applications like
in [3]). Data representation (the way of encoding the rele-
vant information) is vital to the practical performance of an
anomaly detection approach (does it capture relevant events
or just insignificant variation).

However, all of these numeric data series have to be “pre-
pared” in advance. A developer had to think ahead about
the potential problems that can arise and expose appropri-
ate measurements. When this data is available, it can clearly
signal the problem to the operators. But what happens when
a new type of outage occurs and no measure to detect it was
put in place? In such case the infrastructure maintainers
typically resort to inspection of raw log files. Writing a line
of text to console or file output is often the only indica-
tion that something happened or has not happened when it
should have. In our experience, all complex IT systems pro-
duce such files and they are still used to solve the hardest
problems and errors.

The log files may be very unstructured in practice and may
contain extremely diverse information. From errors, warn-
ings, database calls and initialization steps, to casual coun-
ters and observations. The log lines themselves may be un-
structured: their content might be unordered and they may
contain text written in natural language (e.g. error mes-
sages). Even then, these bits of information may or may not

be written in a easy-to-parse form (e.g. JSON format). The
only thing that can be expected of each line is a timestamp -
a clear indication of time on the server, when this particular
line was written to the log. Even if this data is missing from
some lines, the sequential order of writing to file helps us
narrow down the possible timestamp for each line. We can
simply choose to re-use the last timestamp before that line.

Many algorithms and approaches to anomaly detection have
been proposed in the literature. [1] provides an excellent
overview of the field. New approaches are getting increas-
ingly more sophisticated at dealing with multidimensional
numeric data, discrete, sequential or even spatial data. The
unstructured nature of raw log files makes the problem amend-
able to text-mining based approaches. This article presents
work in that direction.

2. ANOMALY-DETECTION

End-users in charge of maintaining a large IT system will
typically be concerned with two types of anomalies. Either
they will want to avoid a sudden, critical degradation of
performance, or they will want to know if the performance
has been slowly degrading and attempt to prevent that.

Abrupt change - In this scenario, the system "falls of the
cliff” - performance plummets and multiple parts of the sys-
tem typically experience severe problems. Users will most
often be notified of the problem via many channels. Hence,
the raw log files are not the first place they will start looking
at. However, if the cause of the problem cannot be deter-
mined or the exact timeline of events of the disaster cannot
be established, the information from the log files will also be
used as a part of the forensic analysis.

Gradual deterioration - IT systems that have been in
production environment for a long time can experience grad-
ual changes. These changes do not necessarily cause catas-
trophic failure overnight, but degrade the performance over
a longer period of time. Such changes are very difficult to
detect by the programmer as they are very subtle, e.g. they
are only observable on the monthly scale. And often the
only place where this can be detected is with a long term
analysis based on the raw log files.

2.1 General pipeline
Algorithm 1 shows the general structure of a typical anomaly-
detection system that operates on a stream.

First, a data record is extracted from the incoming data. As
stated before, the timestamp is always defined. The record
can also incorporate recent past data (previous lines of log
file) and contextual data (e.g. server overall status, holidays
indicator).

In the second step a score is calculated that should reflect a
record’s anomalousness (non-normality, novelty). The sim-
pler the score, the easier the subsequent steps are. Addi-
tionally, we prefer models and scoring functions that can
easily be explained to the end user, since he is supposed
to act on them. Lastly, the score should be constructed in
such manner that the anomalous examples fall on one edge
of the spectrum (e.g. the higher the score, the bigger the
anomaly).

Algorithm 1 General anomaly pipeline

while input data available do
parse data and extract record
calculate anomaly score
if score above threshold then
report anomaly

end if
add record to model
end while
Lem it Parsed records Window KNN
. Summary
text —p |timestamp, BOW
—>| ~ p, BOW| —»
— \—‘/V
I !
~A "
vo A0 D
Quantile estimation
«—— _ «——Score
Anomaly Threshold

Figure 1: Text-processing anomaly pipeline

The score value is then used to decide if the incoming data
record is an anomaly - either by comparing against some
manually predefined static threshold or against a dynamic
one, which uses historical score values to determine the thresh-
old autonomously. Finally, in case of an anomaly, an alert
is created that contains enough data to explain what was
observed and why it was tagged as an anomaly.

Only when all of the above steps are done, we add the new
data point to the model. We can store it internally in the
model for some time, but we have no guarantee to be able to
ever again access all the historical data (e.g. for retraining
of the algorithm).

2.2 Defining normality

It is crucial for any anomaly-detection system to be able
to tell what normal is, so that based on this notion it can
say that something is not normal, i.e. anomalous. When
available, domain knowledge and experience from human
experts can be used to capture the appropriate aspect of
normality in the data, which greatly improves the quality of
the reported anomalies.

In general, however, the systems need the ability to au-
tonomously define normality. This ability greatly depends
on the scoring function and it is common practice to define
it in a way that only the values on the border of observed
values are indicators of an anomaly.

2.3 Detecting anomalies on raw log files

We will now present our approach to anomaly detection
based on text processing techniques. The steps of the ap-
proach are given in Algorithm 2 and graphically presented
in Figure 1.

The log parser processes a single line at the time and each

Algorithm 2 Log-file anomaly pipeline

while input data available do
read data from log file
parse data and extract BOW
insert into time windows
calculate distance in kNN
if score quantile above threshold then
create explanation using distance
report anomaly
end if
add record to model
end while

time emits a record with several features. In the second step
we extract standard BOW (bag-of-words) feature vectors.
There are several possible ways of how to extract features
and how to weight each feature dimension. We chose to
use a simple representation where we extract tags, such as
server=z and process=mytask.tsk. We collect all these tags
from the record and assign them weight 1. This means that
individual lines can produce vectors of varying lengths, as
they are not normalized. We could also normalize them or
re-weight them using the TFIDF weighting scheme ([6]) to
down-weight frequent tags.

To capture the wider context of each record, we aggregate
a set of records within a time-window of predefined length
and emit a combined record (simple normalized sum of all
vectors) that represents that window. In the fourth step, we
use the k-nearest-neighbor algorithm (kNN) to find which
k windows from the past are the closest to current window.
This unsupervised algorithm was chosen because it can han-
dle skewed distributions very well.

The average distance of the k neighbors is used as an anomaly
score: the further away an instance is to its nearest neighbor
set, the more anomalous it is. The value of the parameter k
is usually small, between 1 and 5. The best value depends
on the data domain and should be determined by experi-
menting.

The absolute scale of the score may vary from problem to
problem and also depends on the feature representation. For
that reason we used a quantile based approach: we compare
the anomaly score of a new instance with scores of recently
observed data points (the size of the of recently observed
data point set is controlled with a parameter learning win-
dow). If the score is higher than a large (example 0.999)
fraction of scores (controlled by a parameter nn_rate), then
we classify the instance as an anomaly. The quantile (1 -
nn_rate) directly controls the detection rate (0.001 corre-
sponds to classifying 0.1% of instances as anomalies) under
the assumption that the data distribution is stationary.

2.3.1 Tokenization

When tokenizing input tests we have several options. If we
know that some common patterns exist on how the special
entities are marked inside the text, we can extract them and
create useful features for BOW step. For instance we can
use message text directly to create BOW. Alternatively, we
can just find identifiers of the origin of the message (e.g.
process name, method name, class name, page name etc.)

Table 1: Synthetic Data - window = 1 min

NN rate | Precision | Recall
0.003 0.06 1.00
0.001 0.15 0.66

0.0005 0.23 0.66

Table 2: Synthetic Data - window = 1 h

NN rate | Precision | Recall
0.05 0.07 0.66
0.03 0.14 0.66
0.01 0.33 0.33

and use these instead of whole texts.

2.3.2 Anomaly explanation

We construct the explanation for an individual alert by find-
ing its nearest neighbor and subtracting one vector from
the other and squaring each element of the resulting vector.
Each dimension is thus attributed with an “anomalousness”
score, and the highest scoring dimensions contributed the
most to the distance to the nearest neighbor. The expla-
nation to the user contains a sorted list of highest scoring
dimensions (clipped to avoid information overload).

3. EXPERIMENTAL RESULTS

3.1 Evaluation

In most real-world anomaly-detection cases we receive a
dataset that is largely unlabelled. The labels we have usually
denote some special catastrophic situations that users expe-
rienced and want to avoid in the future. The rest of the data
can be assumed to be mostly “normal”, but unknown anoma-
lies may also remain in the dataset. The standard metrics
to evaluate the performance of an anomaly detector are pre-
cision (#true anomalies / #predicted anomalies) and recall
(#predicted true anomalies / #true anomalies). Low preci-
sion translates to a higher burden on the user that inspects
the anomalies (each inspection has some cost) and low recall
translates to missing many anomalies and increasing risk. If
we suspect that the dataset is not labelled completely (unla-
belled anomalies present) the precision might be estimated
pessimistically and recall might be measured optimistically.
In such cases manual inspection of false positives might lead
to discovering new relevant types of anomalies present in the
dataset.

3.2 Synthetic data

We generated log files by simulating parallel execution of
several processes, each having a specific pattern of writing
to log. We then manually inject 8 instances of anomalous
entries, 2 per week, each pair occurring within one minute.

We use 10 days for the kNN learning window length, so there
will be no anomalies in the first 10 days. For the length of the
input-grouping window, we experimented with two settings:
1 minute and 1 hour. In the former setting we have 6 original
anomalies, but in the later, we only have 3 since each pair of
adjacent anomalies (they are 1 minute apart) gets collapsed
into the same hour. We set the parameter k to 1 - thus
making the explanation of the anomaly very simple.

Table 3: Web logs - an anomaly explanation example

File Val | Near | Contr
/shuttle/missions/sts-68/mission-sts-68.html | 0.707 0 0.354
/images/NASA-logosmall.gif 0 | 0.505 0.180
/htbin/cdt_main.pl 0 | 0.416 0.122

Table 1 shows the results for windows of length 1 minute.
When parameter nn_rate, which controls the sensitivity to
outliers, was set to 0.03, it correctly detected all 6 manually
inserted anomalies. Table 2 shows the results for windows
of length 1 hour. This granularity of data is too coarse and
hides certain anomalies that remain undetected.

3.3 Web-server logs

We analyzed browsing pattern logs from a production web
server where the logs contained information on web-page
and file requests. The specific feature of this web site is
that it is almost completely static - there are almost no new
pages being added to it, so the browsing patterns should
be relatively constant. The dataset spanned a period of
one month. We set the summarization window length to 5
minutes and the kNN comparison window length to 10 days.
The parameter k was again set to 1 and the anomaly rate
was set to 0.001. The parameters were hand-tuned.

When analyzing such data the anomalies that we are in-
terested should capture both system failure (malfunctioning
software, infrastructure failure) as well as malevolent behav-
ior (denial-of-service attack (DoS), a hacker-induced scan-
ning for exploits). In these cases the system should ideally
produce anomalies with strong dimensional outliers.

We manually inspected anomalies where the strongest di-
mension contributed more than 30% of the total anomaly
score. An example is shown in Table 3, where columns Val
means value in current record, Near means value in the
nearest record and Contr means contribution to the total
distance. It turns out that these anomalies corresponded
to the rare events when new content was added to the web
page. No DoS or hacker attacks were detected in the ob-
served time period. So the vector dimension for the file
(mission — sts — 68.htm) was Val = 0.707. This file was not
present in the nearest record (Near = 0) and this dimension
contributed 0.354 of the total distance between this record
and the nearest one.

4. CONCLUSIONS AND FUTURE WORK

We presented a novel combination of known approaches to
anomaly detection using techniques developed in the field of
text mining. Using these we were able to extract valuable
information from raw textual log files that are normally only
used for manual inspection and forensic analysis.

Our algorithm is based on processing log files, but many
other sources of information can be used to extract anoma-
lies in modern IT systems. Our long-term goal is to de-
sign what we call Full-spectrum anomaly detection system
(FSADS) that will be able to import many different types of
data streams, covering a wide range of aspects of an IT sys-
tem (inputs, outputs, internal performance, database per-
formance, network communications etc.). After each single
source of data is analyzed and anomalies are extracted, the
next step in FSADS will correlate them, determine critical

signals (which anomalies have a high impact on system?), in-
dicate possible root causes (what might have caused a par-
ticular anomaly?) and give predictions (what may follow
after detecting a particular type of anomaly?).

The popularity of deep learning techniques ([7]) is also felt
in the anomaly-detection field and we plan to study their
application to multivariate analysis. Most often, autoen-
coders are used to create compact descriptions of the data
and may also be used to highlight the dimensions with high
reconstruction error. Another interesting approach is to use
generative adversarial networks ([2]), where two neural net-
works are contesting in a zero-sum game: one network gen-
erates “normal” candidates and the other one discriminates
between generated examples and true examples. We cur-
rently see two major challenges for broader use of deep neu-
ral networks in anomaly detection systems. The first one is
the ability to explain the results to the end-user in an ac-
tionable way. The second one is processing of stream data
and updating the model on-the-fly. Currently, existing and
simpler techniques (e.g. kNN, clustering, statistical tests)
provide much better support for these requirements. How-
ever, the linearity in describing the feature space is an issue
that we would like to address in the future and deep neural
networks present a promising approach.

5. REFERENCES

[1] C. C. Aggarwal. Outlier Analysis. Springer New York,
New York, New York, 2013.

[2] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.
Generative adversarial nets. In Z. Ghahramani,

M. Welling, C. Cortes, N. D. Lawrence, and K. Q.
Weinberger, editors, Advances in Neural Information
Processing Systems 27, pages 2672—-2680. Curran
Associates, Inc., 2014.

[3] A. Lakhina, M. Crovella, and C. Diot. Diagnosing
network-wide traffic anomalies. In Proceedings of the
2004 Conference on Applications, Technologies,
Architectures, and Protocols for Computer
Communications, SIGCOMM ’04, pages 219-230, New
York, NY, USA, 2004. ACM.

[4] X. Liu, P. Zhang, and D. Zeng. Sequence matching for
suspicious activity detection in anti-money laundering.
In C. C. Yang, H. Chen, M. Chau, K. Chang, S.-D.
Lang, P. S. Chen, R. Hsieh, D. Zeng, F.-Y. Wang,

K. M. Carley, W. Mao, and J. Zhan, editors, IS]
Workshops, volume 5075 of Lecture Notes in Computer
Science, pages 50-61. Springer, 2008.

[5] C. Phua, V. C. S. Lee, K. Smith-Miles, and R. W.
Gayler. A comprehensive survey of data mining-based
fraud detection research. CoRR, abs/1009.6119, 2010.

[6] G. Salton, A. Wong, and C. S. Yang. A vector space
model for automatic indexing. Commun. ACM,
18(11):613-620, Nov. 1975.

[7] S. Zhai, Y. Cheng, W. Lu, and Z. Zhang. Deep
Structured Energy Based Models for Anomaly
Detection. ArXiv e-prints, May 2016.

