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ABSTRACT 

Real-time classification of events in high energy physics is 

essential to deal with huge amounts of data, produced by proton-

proton collisions in ATLAS detector at Large Hadron Collider in 

CERN. With this work we have implemented a triggering 
mechanism method for saving relevant data, based on machine 

learning. In comparison with the state of the art machine learning 

methods (gradient boosting and deep neural networks) 

shortcomings of Support Vector Machines (SVM) have been 

compensated with extensive feature engineering. Method has been 
evaluated with special metrics (average median significance) 

suggested by the domain experts. Our method achieves  

significantly higher precision and 8% lower average median 

significance than the current state of the art method used at ATLAS 

detector (XGBoost).    

Categories and Subject Descriptors  

H.2.8 [Database Applications]: Data mining, scientific databases 

General Terms  

Algorithms, Measurement, Experimentation. 

Keywords 

Support Vector Machine, Gradient Boosting, Classification, High 
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1. INTRODUCTION 
ATLAS and CMS experiments have announced discovery of the 

Higgs boson in 2012 [1]. Experiments have been conducted on 

Large Hadron Collider (LHC) in CERN in Geneva. The discovery 

has been succeeded by a Nobel Prize in Physics, awarded to 
François Englert and Peter Higgs. The existence of the particle, 

which gives mass to other elementary particles, has been predicted 

around 50 years ago [6][7][8]. 

Higgs boson decays almost instantly and can be observed only 

through its decay products. Initially the particle has been observed 

through 𝐻 → 𝛾𝛾, 𝐻 → 𝑍0𝑍0 and 𝐻 → 𝑊+𝑊− decays. These 

decays leave a signature that is relatively easy to interpret. The next 
steps required analysis of Higgs boson decay into fermion pairs: τ 

leptons or b quarks. 

In this paper we focus on a special topology of 𝐻 → 𝜏 +𝜏− decay 
[9]. Due to similarities with other decays this particular decay is 

very difficult to classify. Distinguishing background (events that do 

not belong to the 𝐻 → 𝜏 +𝜏 − decay) from signal (events that belong 
to Higgs boson decay) requires the use of state of the art machine 

learning methods.  

In the past the task has often been solved with simple cut -off 

techniques based on statistical analysis, performed by expert users. 

Today advanced classification methods based on machine learning 

are used regularly. 

State of the art methods for this type of problems include deep 

neural networks and gradient boosting [10][11][12]. Experiments 

at CERN prefer the usage of gradient boosting classifiers as they 

are able to evaluate large amounts of data (more than 20 × 106 
events/s) [4]. 

The success of both methods is based on their intrinsic property of 

introducing non-linearity into the system. In our work we want to 
compare basic linear methods and Support Vector Machines 

(SVM) with different kernels to the state of the art models. 

Additionally, we want to enrich the data by intensive feature 

engineering. 

The results of feature engineering can be used for further physical 
interpretation of relevant physical phenomena. 

2. DATA 
Dataset has been made public by the ATLAS collaboration for the 
Higgs Boson Machine Learning Challenge on Kaggle in 2014 [3]. 

It contains data from the ATLAS detector simulator (real labelled 

data would be impossible to obtain). The winning method from the 

challenge is being used in the ATLAS experiment today [4]. 

 

Figure 1. Distribution of signal (yellow) and background 

(green) according to most informative attribute 

DER_mass_MMC (mass of Higgs boson candidate) [5]. 

 

2.1 Data Description 
Dataset consists of 250,000 instances. 85,667 represent signal, 
164,333 represent background. Each instance consists of 32 

attributes and 1 target variable. All the attributes are numerical 

(continuous), target variable is nominal (binary). 2 of the attributes 



should not be used for classification purposes, as they represent id 

of the instance and probability of such an event happening in the 

experiment [4]. 

There are missing values in the data. 11 attributes could not always 

be measured due to characteristics of the detector. Distribution of 

the missing values is different for signal and for background. 

 

Figure 1. Plot of 1st PCA component against the 3rd. Red dots 

represent signal instances, green dots represent background 

instances [5]. 

 

The signal is limited to the events representing only one possibility 

for  𝜏 +𝜏 − pair decay [4]. 

2.2 Data Understanding 
The main task of our method is to separate the signal from the 

background, based on the ATLAS detector measurements. As vast 

amounts of data (a few terabytes/day) are generated within the 

process it is crucial that only the relevant events are detected and 

stored [4]. 

Exploratory analysis has shown (see Figure 1) that this task can not 
be successfully accomplished with simple cut-off techniques based 

on a single attribute. Figure 2 depicting PCA components plot is a 

bit more promising as parts of phase space can clearly be assigned 

to one of the classes. 

Attributes are divided into 3 groups. First group contains 18 

primary attributes (measured in the detector), second group 

contains 12 derived attributes (relevant physical phenomena 
calculated from primary attributes) and 2 metadata values (weight 

and event id). Detailed exploratory data analysis can be found in 

[5]. 

2.3 Data Preprocessing 
ATLAS detector enables good precision of all measurements, 

therefore expected noise in the data is very small and it can not be 

further filtered. Missing values have been dealt with in two 

different ways. Firstly – we used “replacement with average” 

strategy to fill in the missing data and secondly, we generated 

additional binary features, representing missing attribute values. 

SVM expects input data to be normalized, therefore the features 
have been normalized with average and standard deviation values 

set to 1. Data transformation has been handled with Pandas library 

in Python. 

2.4 Feature Engineering 
The main task of our work has consisted of extensive feature 

engineering, where non-linear combinations of features were 

introduced to overcome the shortcomings of linear SVM in 

comparison with gradient boosting or deep neural networks. 

We have built new features from original attributes by transforming 

them with some common functions like 𝑒𝑥, 𝑥2, 𝑥3, √𝑥 and 𝑙𝑜𝑔 (𝑥). 
Additionally we have used k-means clustering to generate an 

additional attribute (cluster id). All the generated feature sets are 

shown in Table 1. 

 

Table 1. Attribute sets used for SVM. 

Set Description 

1 Original feature set. 

2 Added missing values. 

3 Filtered missing values and all 𝑒𝑥 derivatives. 

4 Filtered missing values, 𝑒𝑥 and all 𝑥2 derivatives. 

5 Filtered missing values, 𝑒𝑥, 𝑥2 and all 𝑥3 derivatives. 

6 
Filtered missing values, 𝑒𝑥, 𝑥2, 𝑥3 and all √𝑥 

derivatives. 

7 
Filtered missing values, 𝑒𝑥, 𝑥2, 𝑥3,  

√𝑥 and all 𝑙𝑜𝑔 (𝑥) derivatives. 

8 
Selection of most relevant transformations by one 

attribute. 

9 Unfiltered set of transformations by one attribute. 

10 Unfiltered set of 𝑥𝑖𝑥𝑗. 

11 
Set of attributes by one of HiggsML winners (Tim 

Salimans, DNN). 

12 Unfiltered set of 𝑥𝑖
2 + 𝑥𝑗

2. 

13 Unfiltered set of 𝑒𝑥𝑖
2+𝑥𝑗

2
. 

14 Unfiltered set of √𝑥𝑖
2 + 𝑥𝑗

2. 

15 Unfiltered set of (1 + 𝑥𝑖𝑥𝑗)
2
. 

16 Filtered set of transformations by 1 and 2 attributes. 

17 (8) with k-means cluster id. 

 

Filtering of the features has been done manually, with a simple cut-

off technique based on feature importance as obtained from linear 

SVM model. 

3. MACHINE LEARNING METHODS 

USED 
Baseline experiments have been carried out with simple cut-

off techniques and linear methods like logistical regression 

and Naïve Bayes classifier. As state of the art methods we 

included gradient boosting and gradient boosting adjusted 

for the approximate median significant metrics (see Section 

3.2) [11]. 

We are proposing to use SVM method [12]. Linear SVM 

can be used for feature selection with large number of 

attributes. It can discover most relevant features in a large 

feature set. 
 



3.1 Brief Description of SVM 
In our setting we are solving a binary classification problem. Let us 

assume, that the classes are linearly separable in our space. In 

general, there are many different hyper planes that can separate the 

two classes. Support vector machine (SVM) method is also called 

maximum margin classifier. There exists only one hyper plane that 

maximizes margin between the two classes [12]. 

 

Figure 2. Maximum margin of dividing hyper plane in  

SVM [5]. 

SVM classifier is derived from maximization of the margin, which 

can be translated into minimization of ||𝑤||
2
 [5][12]. As we are 

dealing with data sets, where classes are not separable, we need to 
consider a soft margin method that would take into account 

classification error. SVM is therefore solving minimization 

problem of ||𝑤||
2

+ 𝐶 ∑ 𝜉𝑖
𝑛
𝑖=1 , where 𝜉𝑖 is a classification error 

metrics and C is a parameter that controls the influence of  𝜉. 

3.2 Brief Description of the Evaluation 

Criteria 
Evaluation of the results is to be done with measures derived from 

confusion matrix (accuracy, precision, recall, 𝐹1). The evaluation 

metrics (approximate median significance) is defined as 

𝐴𝑀𝑆 =  √2 (𝑠 + 𝑏 + 𝑏𝑟𝑒𝑔) ln (1 +
𝑠

𝑏 + 𝑏𝑟𝑒𝑔
) − 2𝑠 

𝑠 represents sum of event probabilities of true positives (signal), 𝑏 
represents sum of event probabilities of true negatives 

(background), 𝑏𝑟𝑒𝑔 is set to 10 and represents a pre-set 

regularization parameter. The metrics favorizes recall before 
precision. In real setting this algorithm is used as a triggering 

mechanism for saving relevant data. Probability for a positive 

example in the real data is only around 𝑝 ≈ 2 × 10−5, therefore we 

do not want to lose many of them.  

 

4. EVALUATION 
Experiments have been carried out in Python. Data loading and 

cleaning has been accomplished with Pandas library, 
implementation of SVM, scaling and other methods have been 

taken from scikit-learn package. Default parameters for 

SVM have been used. 

On our system SVM learning phase took ~1 hour. For time 

optimization purposes normal evaluation with training and test set 

has been performed. Training set consisted of 225,000 and test set 

of 25,000 instances. 

Table 2. Evaluation of different attribute sets on SVM with 

linear kernel.  

 Attribute set Prec. Rec. Acc. 𝑭𝟏  AMS 

1 0.665 0.548 0.749 0.600 1.999 

3 0.748 0.655 0.805 0.698 2.526 

4 0.748 0.654 0.805 0.698 2.528 

5 0.740 0.657 0.802 0.696 2.478 

6 0.743 0.683 0.809 0.712 2.547 

7 0.734 0.690 0.807 0.711 2.516 

8 0.732 0.670 0.802 0.700 2.482 

10 0.744 0.705 0.815 0.724 2.582 

11 0.694 0.584 0.768 0.634 2.201 

12 0.744 0.705 0.815 0.724 2.583 

13 0.744 0.709 0.816 0.726 2.581 

14 0.744 0.705 0.815 0.724 2.583 

15 0.744 0.710 0.816 0.726 2.578 

16 0.740 0.684 0.809 0.711 2.553 

 
Results from extensive feature engineering are shown in Table 2. 

Linar SVM performed similar to linear baseline methods (logistic 
regression, Naïve Bayes). AMS score was ~2.00. Best feature sets 

for linear SVM were (10), (12), (13) and (14). These feature sets 

include two-attribute transformations, e.g., xixj . It is interesting to 

notice that filtered feature sets performed slightly worse. Extensive 
feature generation achieved almost 30% better AMS results (1.999 

on basic feature set compared to 2.583).  

Table 3. Evaluation of different methods and attribute sets 

compared to baseline and state-of-the-art methods. 

Method and 

attribute set 
Prec. Rec. Acc. 𝑭𝟏  AMS 

simple window 0.560 0.824 0.716 0.667 1.579 

log. reg. (1) 0.668 0.535 0.749 0.594 2.015 

SVM-LIN (13) 0.744 0.709 0.816 0.726 2.581 

GBC (8) 0.787 0.703 0.832 0.742 2.856 

SVM-r (8) 0.791 0.718 0.837 0.752 2.940 

opt. SVM-r (8) 0.907 0.446 0.793 0.598 3.451 

XGBoost (1) 0.665 0.806 0.793 0.729 3.735 

 
Table 3 contains results of baseline, state-of-the-art and the 

proposed SVM. Best feature sets for selected methods were chosen. 

Baseline methods are simple window (based on cut-off technique 

on candidate particle mass) and logistic regression. As state of the 
art methods we included: gradient boosting (GBC) and current state 

of the art (XGBoost, gradient boosting optimized for AMS). 



Proposed methods are linear SVM, SVM with RBF kernel (SVM-

r) and optimized SVM with RBF kernel (opt. SVM-r). 

Usage of kernels (RBF and polynomial kernels have been tested) 

improved AMS score for another ~15%. Because of the nature of 

SVM kernels in this setting 2-attribute transformations were less 
efficient than 1-attribute transformations. Selection of most 

relevant transformations by 1 attribute (set (8)) gave the best 

results. Method behaved better than gradient boosting classifier 

(GBC) on the same training set. However, methods were not 

optimized to maximize AMS score. The difference however 
suggests that the usage of SVM might be a promising way to 

proceed. 

Finally we optimized SVM with RBF kernel for AMS score and 

compared it to XGBoost method, which implements gradient  

boosting, optimized for AMS. Optimization has been done based 

on threshold for SVM confidence score. Our method performs 
approximately ~8% worse than the state of the art. There is, 

however, a big difference with XGBoost. Our method yields higher 

precision than the other methods and still preserves very high AMS 

score. The proposed method also performs ~20% better than other 

SVM based methods reported in HiggsML Challenge [3]. 

 

5. CONCLUSION 
In our work we have examined the potential of SVM for a 

triggering mechanism in high-energy physics domain. With 

extensive feature engineering we have also provided an interesting 

input for high energy physics experts, where most effective 

generated features could be analyzed through domain knowledge. 

Our method achieves more than 200% better AMS score compared 
to cut-off techniques, based on statistical approach. Further, our 

methods achieves ~20% better AMS score than other SVM based 

methods reported by HiggsML Challenge competitors, but 

performs ~8% worse than current state of the art (XGBoost). There 

is however a significant difference between our method and state 
of the art. Although achieving comparable AMS score, our methods 

achieves much better precision. This might make SVM based 

methods valuable members of an ensemble method. 

Beside adding SVM methods to ensembles and trying to improve 

state of the art, further work could be done with adapting the SVM 

optimization to AMS metrics. In our work features were selected 

based on weight-importance. Often different transformations of the 
same attributes have been selected. Features that could improve our 

models only by little have potentially been left out. This should be 

studied further. Optimization of SVM parameters should also be 

performed.  
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