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ABSTRACT
Efficient and accurate classification of land cover and land
usage can be utilized in many different ways: ranging from
natural resource management, agriculture support to legal
and economic processes support. In this article, we present
an implementation of land cover classification using the Per-
ceptiveSentinel platform. Apart from using base 13 bands,
only minor feature engineering was performed and different
classification methods were explored. We report an F1 and
accuracy score (80-90%) in range of state of the art when
using pixel-wise classification and even comparable to time
series based land cover classification.
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1. INTRODUCTION
Specific aspects of earth observation (EO) data (huge amount
of data, widespread usage, many different problem settings
etc.), coupled with the recent launch of ESA Sentinel mission
that provides a huge volume of data relatively frequently (ev-
ery 5-10 days), present an environment that is suitable for
current machine learning approaches.

Efficient and accurate land cover classification can provide
an important tool for coping with current climate change
trends. Classification of crops, their location and potentially
their yield prediction provide various interested parties with
information on crop resistance, adapting to changes in tem-
perature and water level changes. Along with direct help,
accurate crop classification tools can be used in a variety of
other programs, from government based subsidies to various
insurance schemes.

Along with previously highly promising features of EO data,
data acquisition and processing pose some specific challenges.
Satellite acquired data is highly prone to missing data due
to various reasons; mostly cloud coverage, (cloud) shadows,
atmospheric refraction due to changes in atmospheric con-
ditions. Additionally, correct training data, either for clas-
sification or regression, is hard to come by, must be rela-
tively recent, and regularly updated due to changes in land
use. Furthermore, correct labels and crop values are almost
impossible to verify and usually self-reported, which often
means that quality of training data is not perfect. Valero et
al. [13] raise the problem of incorrect (or partially correct)

data labels, which will become apparent when interpreting
results.

Another class of problems is posed by the spatial resolu-
tion of images. Since satellite images provided by the ESA
Sentinel-2 mission have a resolution of 10 m× 10 m on most
granular bands and 60 m × 60 m on bands used for atmo-
spheric correction, land cover irregularities falling in this
order of magnitude might not be detected and correctly
learned on. This problem is especially prevalent in smaller
and more diverse regions, where individual fields are smaller
and land usage is more fragmented.

The current state of the art land classification focuses heav-
ily on the temporal dimension of acquired data [1], [13],
[14]. The time-based analysis offers clear advantages since
it considers growth cycles of sample crops, enables continu-
ous classification etc., and generally produces better results,
with reported F1 scores for crop/no-crop classification in a
range from 0.80-0.93 [14]. One major drawback of time-
based classification is the problem of missing data. In our
test drive scenario, 70% of images are heavily obscured by
clouds [9], a problem which removes a lot of the advantages
of time-based classification and demands major compensa-
tions with missing data imputation.

In this paper, we present a possible approach on a land cover
classification of single time image acquired using the Percep-
tiveSentinel 1 platform, using multiple classification meth-
ods for tulip field classification in Den Helder, Netherlands.

2. PERCEPTIVESENTINEL PLATFORM
2.1 Data
Data used in this article is provided by ESA Sentinel-2 mis-
sion. The Sentinel-2 mission comprises a constellation of two
polar-orbiting satellites placed in the same orbit, phased at
180◦ to each other [2]. Sentinel-2A was launched on 23rd

June 2015, while the second satellite was launched on 7th

March 2017. Revisit time for equator is 10 days for each
satellite, so since the launch of the second satellite, each
data point is sampled at least every 5 days (a bit more fre-
quently when away from the equator).

Each satellite collects data in 13 different wavelength bands
presented in figure 1, with varying granularity. Data ob-
tained for each pixel is firstly preprocessed by ESA where

1http://www.perceptivesentinel.eu/

http://www.perceptivesentinel.eu/


atmospheric reflectance and earth surface shadows are cor-
rected [4].

Figure 1: Sentinel 2 spectral bands [12]

2.2 Data Acquisition
Satellites provide around 1TB of raw data per day, which
is provided for free on Amazon AWS. Images are then pro-
cessed and indexed by Sinergise and subsequently provided
for free along with their SentinelHub [11] library. As part
of the PerceptiveSentinel project, a sample platform was de-
veloped on top of SH library, which eases data acquisition,
cloud detection and further data analysis on acquired data.

The whole dataset currently consists of images captured
from the end of June 2015 till August 2018. Images are avail-
able for use in a few hours after being taken. Since working
with data for the whole world is impractical, smaller geo-
graphical regions are usually queried and analyzed on their
own. One important aspect when analyzing larger regions
that must be taken care of is the fact that EO data is ac-
quired in swaths with the width of approximately 290 km
[3]. Since the swaths overlap a bit, care must be taken when
sampling larger areas (in a size of small state), as the area
might be chopped into a few irregular tiles covering only
part of an area of interest.

Corrected images are available using the SentinelHub li-
brary. PerceptiveSentinel platform provides an easy to use
framework that combines satellite data acquisition, subse-
quent cloud detection enables an easy way to pipeline ma-
chine learning framework. They also provide an easy way
to integrate (vectorized or rasterized) geopedia layers as a
source of ground truth for classification.

2.3 Data Preprocessing
Most of the preprocessing is already done by ESA (atmo-
spheric reflectance, projection . . . ). The data is mostly clean
and presented as a pixel array with dimensions H×W×B,
where W and H are image dimensions (in our case 589 and
590) and B is number of bands selected (in our case 13, but
we may individually preconfigure the Sentinelhub library to
return variable number of bands and even custom calcula-
tions based on other bands).

When preprocessing we only need to consider one part of
problematic data, namely clouded parts of images. ESA
provides some sort of cloud detection, but our experiments
proved it unsatisfactory, so we used the s2cloudless library
developed by Sinergise for this task [10].

3. METHODOLOGY
3.1 Sample Data
For purpose of this article, a sample patch of fields in Den
Helder, Netherlands, with coordinates: (4.7104, 52.8991),
(4.7983, 52.9521) was analyzed. Three different datasets
were considered: tulip fields in year 2016 and 2017 and
arable land in 2017. For each of these datasets, the first ob-
served date with no detected clouds was selected and binary
classification (tulips vs no-tulips and arable vs non-arable
land) was performed on the image from that date. The date
selection was based on the fact that tulips’ blooms are most
apparent during late April and beginning of May [9].

3.2 Feature Vectors
Three additional earth observation indices that were used as
features are presented in Table 1 as suggested by [8].

Name Formula

NDVI
B08 −B04

B08 + B04

EVI
2.5(B08 −B04)

(B08 + 6B04 − 7.5B02 + 1)

SAVI (1 + 0.5)
B08 −B04

B08 + B04 + 0.5

Table 1: Additional indices

For each selected image, all 13 Sentinel2-bands were consid-
ered as feature vectors for each pixel, in the second experi-
ment, additional land cover based classification indices from
Table 1 were added.

3.3 Experiment
The experiment was conducted in the Den Helder region
to asses the effectiveness of classification and improvement
with additional features. The same region is also used as a
test drive location for the PerceptiveSentintel project. One
important characteristic to keep in mind is the fact that
classification classes are not uniformly distributed. Tulip
fields constitute 17.1% and 17.7% of all pixels in the year
2016 and 2017 respectively, while arable land accounts for
64% of pixels in 2017 data set. Care must, therefore, be
taken when assessing the predictive power of a model.

For each dataset, multiple classification algorithms were tested
on base band feature vectors and feature vectors enriched
with calculated indices from Table 1. Experiments were
carried out using python library scikit-learn and default
parameters were used for each type of classifier. For each
data set and each classifier (Ada Boost, Logistic regression,
Random Forest, Multilayer perceptron, Gradient Boosting,
Nearest neighbors and Naive Bayes), 3-fold cross-validation
was performed. Folds were generated on a non-shuffled dataset
with balanced classes ratios.

4. RESULTS
Results of selected classifiers are presented in Tables 2–4 (ind
column indicates additional indices as features) are compa-
rable with results from related works [5], [6] which report



accuracy results from 60-80%, although our experimental
dataset was quite small and homogeneous, which might of-
fer some advantage over larger plots of land.

Alg. Ind Prec Rec Acc F1 T

Logistic
Regression

No 0.895 0.551 0.912 0.682 2.8
Yes 0.877 0.564 0.912 0.686 3.6

Decision
Tree

No 0.640 0.697 0.881 0.667 7.9
Yes 0.629 0.698 0.878 0.662 11.3

Random
Forest

No 0.870 0.675 0.927 0.760 15.0
Yes 0.867 0.680 0.927 0.762 21.7

ML
Perceptron

No 0.875 0.720 0.935 0.790 184.2
Yes 0.835 0.740 0.931 0.784 241.3

Gradient
Boosting

No 0.878 0.657 0.926 0.751 84.8
Yes 0.856 0.657 0.923 0.743 120.6

Naive
Bayes

No 0.343 0.800 0.704 0.480 0.4
Yes 0.316 0.808 0.669 0.454 0.6

Table 2: Tulip fields in 2016 results

Alg. Ind Prec Rec Acc F1 T

Logistic
Regression

No 0.514 0.561 0.829 0.537 2.8
Yes 0.545 0.615 0.841 0.578 4.0

Decision
Tree

No 0.574 0.633 0.852 0.602 7.3
Yes 0.565 0.634 0.849 0.598 11.2

Random
Forest

No 0.786 0.599 0.900 0.680 13.8
Yes 0.788 0.604 0.901 0.683 20.5

ML
Perceptron

No 0.790 0.673 0.911 0.727 375.9
Yes 0.780 0.693 0.911 0.734 419.8

Gradient
Boosting

No 0.786 0.613 0.902 0.689 84.4
Yes 0.785 0.614 0.902 0.689 120.3

Naive
Bayes

No 0.330 0.861 0.666 0.477 0.4
Yes 0.318 0.858 0.649 0.464 0.6

Table 3: Tulip fields in 2017 results

For each test, precision, recall, accuracy, and F1 score were
reported along with the timing of the whole process. As
seen from the tables, multilayer perceptron achieved best
results when comparing F1 score across all data sets, but its
training was considerably slower than all other classification
methods (in fact, it’s training time was comparable to all
other classification times combined). Multilayer perceptron
was followed closely by random forest, which achieved just
marginally worse results, but was way less expensive to train
and evaluate, while still retaining score that was higher or
comparable with related works.

Adding additional features to feature vector did not signif-
icantly improve classification score and has in some cases
even hampered performance while having a significant im-
pact on the training time.

Using classifier trained on 2016 tulips data and predicting
data in 2017 yielded an F1 score of 0.57, while classifier
trained on 2017 data yielded an F1 score of 0.67 on 2016
data, indicating the robustness of the classifier.

Graphical representation of classification errors can be seen
in Figure 2 and 3 which show true positive (TP) pixels in
purple color, false positive (FP) in blue color and false neg-
ative (FN) in red. Looking at the images it can easily be

Alg. Ind Prec Rec Acc F1 T

Logistic
Regression

No 0.853 0.913 0.843 0.882 2.7
Yes 0.854 0.908 0.841 0.880 3.2

Decision
Tree

No 0.878 0.868 0.837 0.873 9.6
Yes 0.885 0.868 0.842 0.876 14.5

Random
Forest

No 0.928 0.889 0.884 0.908 17.3
Yes 0.934 0.891 0.889 0.912 26.3

ML
Perceptron

No 0.929 0.932 0.911 0.931 522.4
Yes 0.926 0.940 0.913 0.933 586.2

Gradient
Boosting

No 0.899 0.921 0.883 0.910 82.6
Yes 0.905 0.926 0.890 0.915 118.4

Naive
Bayes

No 0.823 0.830 0.776 0.827 0.4
Yes 0.814 0.806 0.757 0.810 0.6

Table 4: Arable land in 2017 results

Figure 2: Graphical representation of errors in ML
perceptron classification of tulip fields in 2017 (TP
in purple, FP in blue, FN in red)

seen, that classification produced quite satisfactory results.
An important thing to notice when inspecting Figure 2 is
that the true positive pixels were classified in densely packed
groups with clear and sharp edges, which correspond nicely
to field boundaries seen with the naked eye (both RF and
Gradient boosting decision trees produced visually very sim-
ilar results). This might suggest that algorithms have de-
tected another culture similar to tulips and classified it as
tulips (or conversely, that the ground truth might not be
that accurate). A lot of FN pixels can also be spotted on
field boundaries, which may correspond to different quality
or mixing of different plant cultures near field boundaries.

Similarly, observing results of arable land classification, one
immediately notices small (false positive) blue patches and
some red patches. Most notably, a long blue line is spotted
in the left part of the image (near the sea), which may in-
dicate some sort of wild culture near the sea that was not



Figure 3: Graphical representation of errors in ML
perceptron classification of arable land in 2017 (TP
in purple, FP in blue, FN in red)

included in the original mask. Further manual observation
of misclassified red patch in the middle of arable land sug-
gests that this field is barren (easily seen in Figure 2) and
possibly wrongly classified as arable land in training data.

5. CONCLUSIONS
In our work, we have examined the use of different classifica-
tion methods and additional features for land cover classifi-
cation problem on a single image. Our results are compara-
ble with results from the related literature. We propose that
classification strength and adaptability be further improved
by considering time series and stream aggregates for each
pixel as researched in [14] [7]. Additionally, pixels might be
grouped together into logical objects to enable object (field)
level classification as proposed by [13].

Furthermore, results have shown, that correct ground truth
mask is essential for good classification performance. As
seen from our results, even seemingly correct labels might
miss some cultures or classify empty straits of land as crops.
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