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ABSTRACT

This paper addresses transportation mode detection for a
mobile phone user using machine learning and based on mo-
bile phone sensor data. We describe our approach to data
collection, preprocessing and feature extraction. We eval-
uate our approach using random forest classification with
focus on feature selection. We show that with feature selec-
tion we can significantly improve classification scores.

1. INTRODUCTION

In the recent years we have witnessed a drastic increase in
sensing and computational resources that are built in mo-
bile phones. Most of modern cell phones are equipped with a
set of sensors containing triaxial accelerometer, magnetome-
ter, and gyroscope, in addition to having a Global Position-
ing System (GPS). Smart phone operating system APIs of-
fer activity detection modules that can distinguish between
different human activities, for example: being still, walk-
ing, running, cycling or driving in a vehicle |2} [3]. However,
APIs cannot distinguish between driving in different kind
of vehicles, for example driving a car or traveling by bus or
by train. Recognizing different kind of transportation, also
known as transportation mode detection, is crucial for mo-
bility studies, for routing purposes in urban areas where pub-
lic transportation is often available, for facilitating the users
to move towards more environmentally sustainable forms of
transportation [1], or to inspire them to exercise more.

In this paper we discuss the use of random forest in trans-
portation mode detection based on accelerometer signal. We
focus on

1. feature extraction, and

2. feature analysis to determine the most meaningful fea-
tures for this specific problem and the choice of classi-
fier.

Our main contribution is feature analysis, which revealed
the impact of each feature to the classification scores.
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While the first attempts to recognize user activity were ini-
tiated before smart phones, the real effort in that direc-
tion begun with the development of mobile phones having
built-in sensors [10], including GPS and accelerometer sen-
sors. There are still some studies that use custom loggers
to collect the data [11}|17] or use dedicated devices as well
as smart phones [5]. Although GSM triangulation and local
area wireless technology (Wi-Fi) can be employed for the
purpose of transportation mode detection, their accuracy is
relatively low compared to GPS [11], so latest state of the art
research is focused on transportation mode detection based
on GPS tracks and/or accelerometer data.

Machine learning approaches for transportation mode detec-
tion often rely on statistical, time-based, frequency-based,
peak-based and segment-based (8] features, however in most
cases statistical features and features based in frequency are
used [10, |11, |16]. Feature domains are described in Table
Statistical, time-based, and spectral attributes are com-
puted on a level of a time frame that usually covers a few sec-
onds, whereas peak-based features are calculated from peaks
in acceleration or deceleration. On the other hand, segment-
based features are computed on the recordings of the whole
trip, which means that they cover much larger scale. Statis-
tical, time-based, and spectral features are able to capture
the characteristics of high-frequency motion caused by user’s
physical movement, vehicle’s engine and contact between
wheels and surface. Peak-based features capture movement
with lower frequencies, such as acceleration and breaking
periods, which are essential for distinguishing different mo-
torized modalities. Additionally, segment-based features de-
scribe patterns of such acceleration and deceleration periods
18]

Machine learning methods that are most commonly used
in accelerometer based modality detection include support
vector machines, decision trees and random forests, how-
ever naive Bayes, Bayesian networks and neural networks
have been used as well |11} |12]. Often these classifiers are
used in an ensemble [16|. The majority of algorithms addi-
tionally use Adaptive Boosting or Hidden Markov Model to
improve the performance of the methods mentioned above
(16} 8 [11] |10]. In the last years, deep learning has also been
used [0} |14].

Accelerometer-only approach where only statistical features
have been used reported 99.8% classification accuracy, how-
ever users were instructed to keep the devices fixed position
during a trip. Furthermore, only 0.7% of data was labeled
as train [11]. State of the art approach to accelerometer-only



Domain Description

Statistical | These features are include mean, standard de-
viation, variance, median, minimum, maximum,
range, interquartile range, skewness, kurtosis, root
mean square.

Time Time-based features include integral and double
integral of signal over time, which corresponds to
speed gained and distance traveled during that
recording. Other time-based features are for ex-
ample auto-correlation, zero crossings and mean
crossings rate.

Frequency-based features include spectral energy,
spectral entropy, spectrum peak position, wavelet
entropy and wavelet coefficients. These can be
computed on whole spectrum or only on spe-
cific parts, for example spectral energy bellow
50Hz. Spectrum is usually computed using fast
Fourier transform, whereas wavelet is a result of
the Wavelet transformation. Entropy measures are
based on the information entropy of the spectrum
or wavelet [7].

Peak Peak-based features use horizontal acceleration
projection to characterize acceleration and decel-
eration periods. These features include volume,
intensity, length, skewness and kurtosis.
Segment-based include peak frequency, stationary
duration, variance of peak features, and station-
ary frequency. The latter two are similar to ve-
locity change rate and stopping rate used by [17].
Segment-based features are computed on a larger
scale than statistical, time-based or frequency-
based features.

Frequency

Segment

Table 1: Feature domains and their descriptions
adopted from [§].

transportation mode detection relies on long accelerometer
samples. It uses features from all five domains for classifica-
tion with AdaBoost with decision trees as a weak classifier
and achieves 80.1% precision and 82.1% recall [g].

The performance of transportation mode detection systems
depends on the effectiveness of handcrafted features designed
by the researchers, researcher’s experience in the field af-
fects the results. Thus, there have been approaches that use
deep learning methods, such as autoencoder or convolutional
neural network, to learn the features used for classification.
Using a combination of handcrafted and deep features for
classification with deep neural network resulted in 74.1%
classification accuracy [15].

3. PROPOSED APPROACH

Work flow of the proposed approach is visualized in Figure
[l The first task is data collection. To collect data we use
NeztPin mobile library [4] developed by the Artificial In-
telligence Laboratory at Jozef Stefan Institute. Library is
embedded into two free mobile applications. The first one is
OPTIMUM Intelligent Mobility [1]. OPTIMUM Intelligent
Mobility is a multimodal routing application for three Eu-
ropean cities — Birmingham, Ljubljana, and Vienna. The
second one is Mobility patterns [4]. Mobility patterns is es-
sentially a travel journal. Both applications send five second
long accelerometer samples every time OS’s native activity
recognition modules, Google’s ActivityRecognition API [2]
for Android and Apple’s CMMotionActivity API [3], de-
tect that the user is traveling in a vehicle. We use that
accelerometer samples for fine-grained classification of mo-
torized means of transportation.
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Figure 1: Detailed work flow diagram of the
proposed approach. We stacked general, high-
level tasks common in other approaches vertically,
whereas subtasks specific to our approach are pic-
tured horizontally.
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Figure 2: Work flows for extraction of peak-based
features.

We collect five second samples of sensor data and resam-
ple them to sampling frequency 100 Hz in the preprocessing
phase. Resampling ensures us that our samples all contain
500 measurements. The most prominent problem we face in
preprocessing concerns the correlation of acceleration mea-
surements with the orientation of the phone in the three
dimensional space. Practically this means that gravity is
measured together with the dynamic acceleration caused by
phone movements. To eliminate gravity from the samples
we perform gravity estimation on raw accelerometer signal.
We follow an approach proposed by Mizell |9]. Gravity es-
timation splits the acceleration to static and dynamic com-
ponent. Static component represents the constant accelera-
tion, caused by the natural force of gravity, whereas dynamic
component is a result of user’s motion. Furthermore, using
this approach we are able to calculate vertical and horizontal
components of acceleration.

We use preprocessed signal to extract features for classifica-
tion. Features are divided into five domains, based on their
meaning and method of computation. We have listed the do-
mains in Table[Il We extract features from three domains —
statistical, frequency, and peak. We extract statistical fea-
tures (maximal absolute value, mean, standard deviation,
skewness, 5th percentile, and 95th percentile) from dynamic
acceleration and its amplitude, horizontal acceleration and



Set Accele. Features Size
D-S Dynamic Statistical 54
D-SF Dynamic Statistical, Frequency 94
D-SFP Dynamic Statistical, Frequency, Peak | 172
H-S Horizontal | Statistical 54
H-SF Horizontal | Statistical, Frequency 94
H-SFP Horizontal | Statistical, Frequency, Peak | 172
ALL 376

Table 2: Predefined feature sets used for classifica-
tion.
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Figure 3: Schema of evaluation scenario.

Join datasets

its amplitude, amplitude of raw acceleration, and amplitude
of vertical acceleration. From the same signals we extract
frequency-based features using fast Fourier transformation.
As frequency-based features we use the power spectrum of
the signal aggregated in 5 Hz bins. Pipeline for extraction of
peak-based features from dynamic and horizontal in acceler-
ation is pictured in Figure[2] To extract peak-based features
we first smooth out the signal with convolution with a box
window and split it into moments of acceleration and mo-
ments of deceleration. Then we find peaks and compute
peak heights, peak widths, peak width heights, and peak
areas. As there is usually more than one peak we aggregate
these values using mean, standard deviation, and skewness.
All together we extract 376 features. We organize features
into seven predefined feature sets we use for classification.
Feature sets are listed in Table

To evaluate the capabilities and performance of the pro-
posed approach, we divide our dataset in 3 subsets — train,
validation, and test set — based on the date the samples
were recorded on. By doing so we avoided using in this
domain methodologically questionable random assignment
of samples collected during the same trip to different sub-
sets. The reason why we did not apply cross-validation is
similar. Using samples from the same trip in train and test
set would result in significantly higher evaluation scores. For
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Figure 4: Distribution of modes in train, validation,
and test set. We also added joint train and valida-
tion set, which we use to train the final model.

Feature set CA RE PR F1

D-S 0.48 0.41 0.39 0.37
D-SF 0.60 0.41 0.41 0.39
D-SFP 0.46 0.39 0.40 0.35
H-S 0.64 0.40 0.43 0.41
H-SF 0.53 0.39 0.43 0.36
H-SFP 0.50 0.37 0.40 0.34
ALL 0.47 0.35 0.40 0.33

Table 3: Classification metrics for classification with
random forest on predefined feature sets.

the training set we use the data from [13], whereas validation
and test sets were obtained during Optimum pilot testing in
2018. During validation step we are trying to maximize F1
score as our data set is imbalanced. We visualized the evalu-
ation scenario in Figure 3| while the composition of the sets
in pictured in Figure [

4. RESULTS

We trained random forest classifier on the predefined fea-
ture sets from Table Classification metrics we report on
include classification accuracy (CA), recall (RE), precision
(PS) and F1 score (F1) Results are listed in Table 3] Ta-
ble [3| shows that we achieved the highest F1 score of 0.41
using H-S feature set. This feature set consists of statisti-
cal features calculated on the horizontal acceleration vector.
Classification accuracy in that case is also high, compared to
other feature sets. The peak features seems to be the source
of noise in the data, as using peak features in combination
with the other features sets decreases the performance, for
example F1 drops from 0.39 for D-SF to 0.35 for D-SFP.

F1 score and classification for dynamic acceleration increase
when we add frequency-based features, whereas these two
measures decrease in case of similar action for horizontal ac-
celeration. This offers two possible interpretations. One is
that frequency-based features of dynamic acceleration carry
more information compared to frequency-based features of
horizontal acceleration. The second one is that statistical
features of horizontal acceleration are much better than sta-
tistical features from dynamic acceleration.

We noticed that smaller feature sets generally perform better
than larger so we focused on feature selection. We initially
train the model with all features and evaluate it on valida-
tion set. Then we remove each feature one by one, train the
model, evaluate it on the validation set and compare all F1
scores. We eliminate the feature with the highest F1 score,
as this means that when the model was trained without that
feature if performed better than when the eliminated feature
was included. We repeat this procedure until the feature set
consists of one feature. Similarly, we do feature addition
— we start with an empty feature set and gradually add
features one by one.

Using the described process of forward feature selection and
backward feature elimination we selected two feature sets
that performed the best — in case of forward selection the
best feature set has 10 features, whereas feature set pro-
duced with backward elimination has 28 features. Feature
set obtained by forward selection mostly contains statisti-
cal features, followed by peak-based. Only one frequency-
based features appears in that set. Additionally, features
are in vast majority extracted from dynamic acceleration.
On the other hand feature set obtained by backward elim-



Feature set CA RE PR F1
Forward selection (10) 0.70 0.50 0.47 0.48
Backward elimination (28) | 0.73 0.50 0.48 0.49

Table 4: Classification metrics for classification with
the selected features in feature selection.

Forward selection Backward elimination
T\P | Car | Bus | Train|| T \P | Car | Bus | Train
Car 0.78 | 0.27 | 0.05 Car 0.83 | 0.12 | 0.05
Bus 0.51 | 0.40 | 0.09 Bus 0.55 | 0.35 | 0.10
Train | 0.47 | 0.21 0.32 Train | 0.45 | 0.23 | 0.32

Table 5: Confusion matrix for classification with the
selected features in feature selection.

ination contains more peak-based features than statistical,
again only one frequency-based feature appears. Dynamic
acceleration and horizontal acceleration appear in similar
proportions. We evaluated the models trained with that
feature sets against the test set. Results are listed in Ta-
ble Both feature sets achieve better F1 scores than any
previous feature sets. Confusion matrix in Table [5| reveals
what are the differences between these two feature sets. We
can see that in case of eliminating features there is less cars
missclassified as buses and more buses missclassified as cars.
Classification of trains is fairly consistent. For buses and
trains the largest part of samples is still missclassified as
cars.

5.  CONCLUSIONS

We showed that while transportation mode with random for-
est is possible, careful feature selection is necessary. Using
feature selection we were able to improve classification scores
for at least 0.04, in some cases even over 0.10. Although clas-
sification scores improved, most of non-car samples were still
misclassified as cars. We observed that even though peak-
based features did not perform as well in predefined feature
sets, they appeared consistently among selected features in
feature selection. That does not hold for frequency-based
feature only one feature appeared among selected features.
For the future work we suggest maximization of another clas-
sification score as we focused on maximization of F1 score.
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