
Learning Hand-Eye Coordination on NAO and its
Applications

Ana Gaja Boc
Jožef Stefan Institute, Department of Knowledge

Technologies
Jamova 39, 1000 Ljubljana

Fakulteta za računalništvo in informatiko
Večna pot 113, 1000 Ljubljana
ab9870@student.uni-lj.si

Sara Bertoncelj Čadež
Jožef Stefan Institute, Department of Knowledge

Technologies
Jamova 39, 1000 Ljubljana

Fakulteta za računalništvo in informatiko
Večna pot 113, 1000 Ljubljana
sb4914@student.uni-lj.si

ABSTRACT
This paper focuses on learning hand-eye coordination on
robot NAO. It elaborates on two different approaches for
computing inverse kinematics using neural networks. It also
presents two applications, based on the computed inverse
kinematics: a system that enables the robot to play tic-tac-
toe against a human opponent and a system that enables
the robot to replicate simple shapes that it sees.

Keywords
robotics, inverse kinematics, vision recognition

1. INTRODUCTION
Inverse kinematics is commonly used for solving problems
such as object grasping, visually guided tasks and also in 3D
animation for interaction between characters and other ob-
jects in the animated world. While calculating the forward
kinematics, that is the position of the end effector based
on joint configuration, is a fairly easy problem to solve, in-
verse kinematics proves to be more challenging because of
its multiple solutions.

Traditional methods are computationally expensive, because
they rely on constructing and operating on large and com-
plex matrices. Such is the iterative method, which requires
the inversion of the Jacobian matrix. There are also alterna-
tive solutions that do not require matrices or rotational an-
gles, such as FABRIK [1] (Forward and Backward Reaching
Inverse Kinematics). This heuristic algorithm performs sim-
ple, iterative operations that gradually lead to an approxi-
mation of the solution, by finding the joint coordinates as
being points on a line. Inverse kinematics for the NAO robot
implemented with the FABRIK algorithm were described by
Renzo Poddighe [5], in an article which focuses on a system
that enables the robot to play tic-tac-toe, very much like
one of the applications presented in this paper. We propose
a third approach by calculating the inverse kinematic with
neural networks.

2. NAO ROBOT
The first public version of robot NAO was presented in
March 2008. Since then six versions of this humanoid have
been produced, each having better cameras, CPU, speech

synthesis in more languages and better face recognition. For
work described in this paper we used NAO version 4.

It has 25 degrees of freedom. The motion ranges of two joints
are important for the computation of inverse kinematics: the
right shoulder roll which has the motion range from -76 to 18
degrees and the right elbow roll which has the motion range
from 0 to 88.5 degrees. It has 1.6 GHz CPU ATOM Z530,
1 GB of RAM and 2 GB of Flash memory. The camera has
up to 1280x960 resolution with 60.9 degrees horizontal field
of view.

NAO’s operating system is based on Linux Gentoo and named
NAOqi OS. It has built-in libraries that are needed for the
NAOqi Framework, the main software that allows commu-
nication between the different modules, programming and
information sharing.

3. INVERSE KINEMATICS
Inverse kinematics was calculated with two different ap-
proaches for two different implementations. For the game of
tic-tac-toe joint positions were calculated for pixels on the
image of the gaming surface taken with the robot’s camera.
For drawing simple shapes joint positions were calculated
for x and y coordinates of points on the tablet.

3.1 Neural networks
In both cases inverse kinematics was calculated using a re-
gression neural network. For playing the game of tic-tac-
toe, the angles in NAO’s arm were measured, by tracking
a red pen, while the robot moved it across the gaming sur-
face. Recorded data consisted of pixel coordinates of the
tip of the red pen in the image taken by the robot’s camera
and the shoulder and elbow roll angles. For drawing, the
shoulder roll, shoulder yaw, elbow roll and elbow yaw were
measured, using a graphic tablet and a stylus pen. While
holding the pen the robot’s hand was moved around on the
tablet surface. As the robot was moving the pen, a program
recorded the angle of each of the aforementioned joint and
the position of the cursor. There were 279 training sam-
ples collected, for playing the game of tic-tac-toe and 10000
training samples for drawing simple shapes. With the sec-
ond method of recording data we could gather a much more
extensive sample size. We could not use the same method for
playing tic-tac-toe because the model had to use the position
in coordinate system of NAO’s camera allowing the program



Figure 1: MSE of the neural network for learning
inverse kinematics for drawing simple shapes.

to work regardless of where in NAO’s field of view the play-
ing area was located. Meanwhile the model for drawing was
transforming the coordinates from the picture taken with
the camera onto a fixed surface in front of the robot. With
fewer training samples the model worked better using just
two degrees of freedom, meanwhile the model with larger
sample size worked better with four degrees of freedom.

Inverse kinematics was calculated using a simple neural net-
work. The neural network was implemented with Keras se-
quential model. Input variables are x and y coordinates.
While neural network for tic-tac-toe had only one hidden
layer, neural network for drawing had two identical hidden
layers. They had 32 nodes and rectified linear unit activa-
tion function. The output layer had two/four nodes which
correspond to the dimensions of the output variable (array
of two/four angles in radians). To evaluate weights we used
the mean square error loss function that calculates the mean
error of both/all four angles and the efficient stochastic gra-
dient descent algorithm Adam [3] for optimisation. To train
the model we used 50 epochs and a batch size of 10 for the
smaller neural network and 50 for the bigger neural network.
The mean square error of the final model for drawing was
4.2 × 10−4, the error at each epoch is shown in Figure 1.
Mean square error of tic-tac-toe model was 6.2 × 10−3, the
error at each epoch is shown in Figure 2.

We also calculated inverse kinematics with Support Vec-
tor Regression. With training samples for drawing, the
mean square error was 1.1 × 10−3, which is considerably
worse than 4.2 × 10−4 error obtained using neural network.
With training samples for tic-tac-toe mean square error was
8.1 × 10−3, while neural network error was 6.2 × 10−3.

Because drawing requires higher precision, there were more
samples collected and a bigger neural network built. It is
also because of the large number of samples, that we get
higher accuracy by predicting four and not just two angles.
For playing tic-tac-toe, precision up to 1 cm is adequate and
it can be achieved by predicting just two angles on a smaller
data set. Measured precision of inverse kinematics is shown

Figure 2: MSE of the neural network for learning
inverse kinematics for playing tic-tac-toe.

Figure 3: The pixels for which the corresponding
arm angles were measured (crosses) and the error
of the computed inverse kinematics (dots).

in the Figure 3.

4. APPLICATIONS
We developed two different applications for inverse kinemat-
ics. The first one enables NAO to play tic-tac-toe, a simple
game where two players take turns in placing their mark
(cross or circle) on a grid of size 3 x 3. The player that
first succeeds in placing three of his marks horizontally, ver-
tically or diagonally, wins the game. The second one focuses
on NAO drawing solid simple shapes, which it captures with
its camera.

4.1 Tic-tac-toe
To solve the problem of the robot playing tic-tac-toe, two
additional separate modules were developed. A vision recog-
nition module was developed, for recognising the location of
the gaming grid and current state of the game. A strategy
module was implemented, for deciding which move will most
likely lead the robot to victory.



Figure 4: Recognising the state of the game.

The vision recognition component is written in Python using
the OpenCV library. Before each move, the robot takes a
picture on which the state of the game and the location of
gaming board are detected.

The image processing pipeline is shown in Figure 4. Prob-
abilistic Hough Line Transform [4], which returns an array
of the start and the end points of all the detected lines is
used for the gaming grid detection. These lines are then
separated into horizontal and vertical lines and ordered by
their position in the image. If there are more than four hor-
izontal or vertical lines detected, they are filtered by their
slope and the distances from the previous and the next line.
The lines that deviate the most are discarded as false de-
tections. After that, we can be sure that the first and the
last horizontal and the first and the last vertical line are the
borders of our gaming grid. The intersections of these four
lines are also calculated and those four points are used to
do a warp transform of the gaming grid, so that the camera
perspective is removed and the grid is seen as from a vertical
position.

The gaming grid is then split into thirds vertically and hor-
izontally, which gives us nine fields on which there could be
a circle or a cross. Hough Circle Transform [7] is used, for
circle detection . If a circle is found, its radius and centre

are compared to the expected values. Hough Line Transform
is used, for cross detection. If there are lines found, possi-
ble intersections of these lines are compared to the expected
values. If there is an intersection in the middle of the field,
then a cross is detected.

In the experiments, the state of the game is correctly recog-
nised in 39/40 cases, which is 97,5% success rate. In 1/40
cases there is an error in vision recognition because of falsely
discarding one or more lines as false detections.

The second component of the system is an algorithm that
chooses the next move, based on the current game state.
Minmax decision rule with alpha-beta pruning was chosen
for that, which makes the robot unbeatable at tic-tac-toe.

When the current state of the game is recognised in the im-
age, that information is passed to the algorithm for choosing
the next move. Inverse kinematics is then calculated, based
on the location of the chosen move. Four arm positions cor-
responding to the field vertexes are calculated, which are
then used for drawing the cross, by connecting the opposite
vertexes of the field.

4.2 Drawing simple shapes
In this application our goal is to teach NAO to draw a simple
shape that it sees through its camera. Besides calculating
the inverse kinematics, another problem we face is comput-
ing the points (in the correct order) that the robot must
reach to render the shape it was shown. To solve this we use
computer vision to process an image that was captured by
the robots camera.

When the robot is ready to draw, it will wait to be pre-
sented with an image. For the following algorithm to work
the image must be of a solid shape on a single-coloured back-
ground. When the image is in the field of view of the robot’s
camera we capture it by pressing on one of the tactile but-
tons on its head. After the image is captured we need to
process it with OpenCV library for Python in order to ex-
tract the contours. First the image must be converted from
colour image to grayscale. Then a bilateral filter is used to
reduce the noise while maintaining defined edges. On the
filtered image we can then use canny edge detection [2] to
find the edges of the shape we want the robot to draw. From
the edge image we can then extract the contours as seen in
Figure 5.

When extracting the contours we chose to store all the points
along the boundary by not using any chain approximation.
This makes the drawing process very slow but it is the most
accurate for all types of shapes. Choosing simple or Teh-
Chin chain approximation [6] works for curved lines but it
can cause problems when drawing shapes with long straight
lines. It reduces the number of stored points to mostly just
the corner points which means the angles for connecting the
points have to be interpolated over a relatively long dis-
tance. The angle interpolation of vertical lines produces
jagged lines as seen in Figure 6.

After we have extracted the contours we use bounding rect-
angle to determine the height and width of the shape so we
can scale it to fit the robot’s drawing area. Once all the



Figure 5: Two pictures NAO captured (on the left)
and with extracted contours (on the right).

Figure 6: Two drawings produced without chain
approximation(on the left) in comparison with two
drawings produced with Teh-Chin chain approxima-
tion(on the right).

points in the contours are properly scaled we can calculate
the angles of robot’s joints using the model from the previ-
ous section.

Because of the friction between the pen and the drawing
surface as well as because of the slight looseness of NAO’s
joints very small errors accumulate while the robot is draw-
ing. This results in the contours on the render images not
being connected at the ends, as shown in Figure 6.

5. CONCLUSIONS
In this paper we solved the problem of hand-eye coordina-
tion using neural networks and applied it to two real life
problems.

The first system is able to play tic-tac-toe game against a
human opponent without losing a single game. Inverse kine-
matics is precise enough so that the cross that robot draws
always has a centre inside the selected field on the gam-
ing grid. Vision recognition correctly recognises the state of
the game in 97% of cases. Currently NAO can only draw
crosses. We wish to develop the system further so that it will
be able to draw circles too. For drawing crosses, four angles
that correspond to field vertexes need to be calculated. If
the robot were to draw circles, we would need to calculate
inverse kinematics for a few dozen positions corresponding
to the circle on the field that the robot would draw. The
precision of inverse kinematics would also need to be much
higher.

The second system successfully extracts contours of solid
shapes of one colour and replicates them. By making the
image processing more robust we could generalise it to work
for more complex drawings. We also wish to improve the
processing by combining the current method of contour ex-
traction with other methods of line detection so that the
system will be able to draw simple lines that are not joined
at the ends.

6. REFERENCES
[1] A. Aristidou and J. Lasenby. Fabrik: A fast, iterative

solver for the inverse kinematics problem. Graphical
Models, 73(5):243–260, 2011.

[2] J. Canny. A computational approach to edge detection.
IEEE Trans. on Pattern Analysis and Machine
Intelligence, 8(6):679–698, 1986.

[3] D. P. Kingma and J. Ba. Adam: A method for
stochastic optimization. ICLR 2014, 2014.

[4] J. Matas, C. Galambos, and J. Kittler. Robust
detection of lines using the progressive probabilistic
hough transform. CVIU, 78(1):119–137, 2000.

[5] R. Poddighe. Playing tic-tac-toe with the nao
humanoid robot. 2013. url:
https://project.dke.maastrichtuniversity.nl/robotlab/wp-
content/uploads/Renzo-Poddighe.pdf accessed:
18-August-2019.

[6] C. Teh and R. Chin. On the detection of dominant
points on digital curve. PAMI, 11(8):859–872, 1989.

[7] H. K. Yuen, J. Princen, J. Illingworth, and J. Kittler.
Comparative study of hough transform methods for
circle finding. Image Vision Comput., 8(11):71–77,
1990.


