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ABSTRACT
Applying machine learning to Big Data can be a cumber-
some task which requires a lot of computational power and
memory. In this paper we present a feature selection tech-
nique for land-cover classification in earth observation sce-
nario. The technique extends the state-of-the-art feature
extractors by pruning the dimensionality of the required
feature space and can achieve almost optimal results with
10-fold reduction of the number of features. The approach
utilizes a genetic algorithm for generation of optimal feature
vector candidates and multi-objective optimization techniques
for candidate selection.
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1. INTRODUCTION
Earth observation (EO) has become one of the major sources
of Big Data. European Sentinel-2 mission, which acquires
global data with 5-day revisit time, reports a total of 6.4 PB
of satellite imagery products being available to the users
via Copernicus services [2], whereas the total cumulative
amount of EO data available from European Space Agency
(ESA) is estimated to exceed 140 PB.

A huge amount of data have motivated EO and machine
learning communities to invest into methodologies to work
with such high volumes. Since 2016, as observed in Big
Data from Space conferences, the community has tackled
and solved the problem of storing, pre-processing and appli-
cations of basic machine learning and extensive deep learn-
ing algorithms for mainly solving classification problems.
Processing pipelines have been established and are used reg-
ularly for solving different EO tasks [6].

The research has already approached the limits of the accu-
racy of the models. Our research has therefore focused on
trade-off between model accuracy (of the current state-of-
the-art) and processing efficiency. The approach is expected
to be used in systems, which require a fast response with
reasonably good results. Possible approaches include the
use of fast classification techniques (i.e. Very Fast Decision
Trees), which were taken from the field of stream mining,
and optimization of the feature selection process.

This paper presents an early attempt to provide effective
feature selection in land-cover classification. We illustrate
that it is possible to significantly reduce the dimensional-
ity of feature space of the state-of-the-art feature extractors
[1, 8, 9] applied to a time-series of satellite images. Exper-
imental data has been acquired by EO-learn library from
PerceptiveSentinel1 project.

2. DATA
Acquiring EO data is achieved using services provided by
European Space Agency (ESA). For our experiments we
have used Sentinel-2 missions data. This data includes scalar
features from 13 different sensors with a resolution from
10 m × 10 m to 20 m × 20 m. A more detailed description
of data available within Sentinel-2 missions is provided in
[6]. EO-learn library [3] presents an abstraction layer over
ESA services, which provide access and basic pre-processed
(i.e. atmospheric correction, cloud detection and similar)
products.

Figure 1: Data flow (acquisition and pre-processing)
with EO-learn library using Sentinel-2 data. EO-
learn modules are depicted with light blue contain-
ers.

Figure 1 depicts the data flow in a typical experiment. The
top row depicts components for Level-1 and Level-2 pre-
processing, which include cloud detection and atmospheric
corrections. Products are being stored in the cloud and are
accessed via EO-learn library. EO-learn modules are inde-
pendent and can communicate with one another through a
unified data structure (EO-patch) that can include satellite

1http://www.perceptivesentinel.eu/

http://www.perceptivesentinel.eu/


imagery data, enriched features, metadata and even corre-
sponding vector data. For example: a feature engineering
module for calculating normalized differential vegetation in-
dex (NDVI) from raw data would take EO-patch including
the original 13 bands as an input and would output the
same patch with an added NDVI index. Such modules are
reusable and are being accumulated in the EO-learn library
and made available to the community. Complex data pro-
cessing and analytics pipelines can therefore be established
literally within minutes.

3. METHODOLOGY
Based on satellite imagery our task is to classify land-cover
in Slovenia. For this task we are using a time-series of im-
ages from the same year, which capture the dynamics of
growth of particular vegetation and enable better accuracy
of the models than a single image. Labels for building classi-
fication models have been acquired from a patch of land-use
data (Slovenian LPIS data). The models can be applied to
a wider area, where ground-truth data is not available and
can even uncover some ground truth data mistakes (or gen-
eralizations). Our goal is to solve the task as fast as possible
yet still accurate.

We base our methodology on the extraction of the state-
of-the-art features from Sentinel-2 dataset. On top of this
dataset we perform intelligent feature selection procedure
based on multi-objective optimization approach.

3.1 Feature Engineering
We have acquired a time-series of satellite imagery for year
2017 and selected 27 small tiles (1 km×1 km) from Slovenia
randomly (ensuring, that appropriate distribution of differ-
ent land-covers was consistent). We have performed cloud
detection and then provided linear interpolation (simply be-
cause it is the fastest) over the remaining data points for
each of the bands and additional indices. From these in-
terpolated data we have extracted the phenological features
suggested by Valero et al. [8]. The features have been cal-
culated from following indices: NDVI, NDWI, EVI, SAVI,
ARVI and SPI2 [5, 6]. These indices provide various infor-
mation from the time-series which are important for land-
cover classification (i.e. speed of growth, length of maximum
index interval, etc.). All together we have used 108 differ-
ent features within our experiments. Some examples of the
features are depicted in Figure 2.

3.2 Feature Selection
A feature selection algorithm should choose a limited amount
of features out of the pool of 108, which would still pro-
vide enough information for almost optimal classification of
land-cover. We employed a modification of the POSS ge-
netic optimization algorithm [7] for the task. The algorithm
would select a candidate solution (a selection of features)
and slightly modify (mutate) it. The mutations have to be
considered carefully, since the number of selected features
must be kept as small as possible. The problem can be
formulated as f : 2N → R, where N is the number of all

2normalized differential vegetation index, normalized differ-
ential water index, extended vegetation index, soil-adjusted
vegetation index, atmospherically resistant vegetation index
and standardized precipitation index

Figure 2: A sample of features extracted from a
time-series of images: standard deviation of NDVI,
max difference in NDVI in a sliding window, length
of time interval where max mean value is attained
(with specified tolerance), mean NDVI and rate
of NDVI time-series change corresponding to the
longest positive interval.

features. We are looking for a subset A ⊆ 2N that optimizes
(minimizes or maximizes) the selected criterion function.

A näıve genetic algorithm without proper weighting of a
number of features behaves poorly on most tested classi-
fiers. If optimizing only the accuracy score (i.e. F1), the
algorithm would almost always converge towards selecting
all the features (since the dataset is large and there is gen-
erally no danger of overfitting). We modified the POSS al-
gorithm to search possible feature space and optimize the
number of selected features as well as the accuracy score
with a 2-dimensional multi-objective optimization.

The main idea of the algorithm is as follows. We have N
features, which we encode into a solution candidate S =
{f1, f2, . . . , fN}. A bit fi represents whether the i-th fea-
ture is selected (value 1) in the candidate solution or not
(value 0). We keep the current optimal elements on a 2-
dimensional Pareto front, which is determined by 1 − F1

score and number of selected features (for illustration see
Figure 4). This approach can easily be extended to any
other fixed dimension. 1− F1 is selected for convenience in
selection (elements on Pareto front are those that are not
comparable to any others in the current Pareto front, as de-
termined by strict product order for each dimension, strict
or non-strict is just a matter of preference when considering
equality, but non-strict version more naturally excludes du-
plicates). In each iteration, the algorithm uniformly samples
an item from the Pareto front and tries to improve it. Each
bit fi is then flopped with probability 1

N
, where N is the

number of features.

This newly constructed candidate is then evaluated for its
performance (F1). All the items on the Pareto front are then
compared with this new item. If there exists no such item
that is comparable or bigger from the new item, the new
item is on the Pareto front and is subsequently added to
it. All items that are comparable or smaller than new item



are removed from the Pareto front, as they are (strictly)
Pareto sub-optimal. Strictness is useful since it removes the
duplicates (in a non-strict product weak ordering, even if
the relation is non-linear, as in the case in the Pareto front,
the product ordering is antisymmetric) [5].

4. RESULTS
Results of the early feature selection experiments are de-
picted in Figures 3 and 4. We have tested the methodology
with the most popular classification techniques used in re-
mote sensing (apart from deep learning): gradient boosting
(LightGBM implementation [4]), random forests and logistic
regression (baseline). Gradient boosting has proven to be a
superior method whereas logistic regression performed the
worst. SVM classifier was not considered since its training
time complexity O(N3) is too high for frequent re-training,
needed in the feature selection algorithm.

Figure 3: Number of tested candidates (y) per num-
ber of features (x). Gradient boosting is depicted
with blue, random forests with orange and logistic
regression with green dots.

Figure 4: The best candidate F1 score (y) per num-
ber of features (x). The lines depict the Pareto front
for a particular classification algorithm. The opti-
mal number of features for random forests and logis-
tic regression is smaller than the size of the longest
tested feature vector. Gradient boosting is depicted
with blue, random forests with orange and logistic
regression with green colour.

Figure 3 depicts the number of tested candidates per num-
ber of features. Number of features starts to decline sharply,
but is a bit jumpy. This represents an expected behaviour
considering the random nature of the feature selection al-
gorithm and incremental difficulty of greatly increasing the
number of features.

Figure 4 shows that smaller number of tested examples with
a high number of features does not significantly affect F1

score (considering small changes of a random element on the
Pareto front, this seems reasonable). The same figure also
shows, that already with a careful selection of just a few
”good” features, classification produces quite good results.
The figure also nicely depicts part of Pareto front and shows
that high quality of feature selection might also improve the
classification in some cases.

A clear plateau shape can be seen in Figure 4, hinting, that
there is a reasonable choice of a subset of features. Selecting
a small, but optimal subset of all features can yield good ac-
curacy score of the classification algorithm, with decreased
memory and computation footprint. The most important
consequence of using an optimal subset of features is, that
it saves a lot of time for data preparation (not extracting
unneeded features, not sending/saving unneeded data) and
most importantly makes the model reasonably small and
fast, which allows usage even on a plethora of low computa-
tional power devices.

In the results presented above, LightGBM classification al-
gorithm performance is unmatched by either random forest
or logistic regression. This is an expected result since boost-
ing can skew the feature space and can inherently introduce
non-linear features into the model. The most illustrative
case for the strength of proper feature selection is however
seen in the case of random forest algorithm. We can observe
from Figure 4 that already with 7 wisely chosen features
(out of 108) one can achieve the optimal F1 classification
score. The reduced number of features speeds up the fea-
ture extraction step (less features need to be calculated) and
modeling (less data is needed, fewer features are considered)
and reduces the memory consumption demand.

5. CONCLUSIONS AND FUTURE WORK
This is the early paper on feature selection used for land-
cover classification. It shows great potential of the method-
ology and up to 15-fold reduction of the number of needed
phenological features in order to still achieve state-of-the-art
accuracy. The methodology could be used with potentially
great benefits also on other types of feature vectors in land-
cover classification (i.e. with resampled index values), where
it would automatically find the features that can distinguish
between various land-cover classes. The main underlying
reason for our research lies in the provision of computation-
ally effective methods for faster, easier and cheaper EO data
analysis.

There are still research challenges to be considered in this
work. Firstly, benefits of feature reduction to the computa-
tional tasks should be examined in depth. The most impor-
tant phase of the process is the inference phase (land-cover
classification on large areas). However, preliminary results
indicate that speed-up and memory consumption might be
smaller than expected based on common sense.

Feature selection should be tested with other faster classi-
fication methods (i.e. based on incremental learning [5]),
which trade accuracy for the faster computation. The latter
might be beneficial in particular use cases (i.e. on-the-fly
classification for on-line EO browsers like SentinelHub or



large scale classification). A comprehensive study of bene-
fits within full-stack pipelines (from data acquisition to in-
ference) should be conducted.

Earth observation community has striven towards achieving
optimal accuracy of the classification algorithms in the past
few years. Especially deep learning algorithms have shown
to require vast amounts of computational time, which is
sometimes difficult to obtain. Presented work, together with
research into computationally effective classification meth-
ods, might be a step towards sacrificing some of the accuracy
in order to achieve final results sooner and with less struggle.
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