
How overall coverage of class association rules affects the accuracy
of the classifier?

Jamolbek Mattiev
 Department of Information Sciences and Technologies

 University of Primorska
 Koper, Slovenia

 jamolbek.mattiev@famnit.upr.si

Branko Kavšek1,2
1Artificial Intelligence Laboratory

Jožef Stefan Institute
Ljubljana, Slovenia

branko.kavsek@ijs.si
2Department of Information Sciences and Technologies

 University of Primorska
Koper, Slovenia

branko.kavsek@upr.si

ABSTRACT
Associative classification (AC) is a data mining approach that
combines classification and association rule mining to build
classification models (classifiers). Experimental results show that
in average the CBA-based approaches could achieve higher
accuracy than some of the traditional classification methods.
In this paper, we focus on associative classification, where class
association rules are generated and analyzed to build a simple,
compact, understandable and relatively accurate classifier.
Furthermore, we discuss how overall coverage and average rule
coverage of such classifiers affect their classification accuracy.
We compare our method that uses constrained exhaustive search
with some “classical” classification rule learning algorithm that
uses greedy heuristic search on accuracy in some “real-life”
datasets. We have performed experiments on 11 datasets from
UCI Machine Learning Database Repository.
Experimental evaluation shows that with decreasing overall
coverage our proposed method tends to get slightly worse
classification accuracy than the “classical” classification rule
learning algorithms. Otherwise, the accuracy is similar or on some
datasets even better than Naive Bayes and C4.5. On the other
hand, the average rule coverage of our proposed method seems to
have no effect on classification accuracy.

CCS CONCEPTS
• Computing methodologies → Machine learning → Machine
learning approaches → Rule learning
• Computing methodologies → Machine learning → Cross-
validation

• Computing methodologies → Machine learning → Learning
paradigms → Supervised learning → Supervised learning by
classification

KEYWORDS
Attribute, frequent Itemset, Minimum Support, Minimum
Confidence, Class Association Rules (CAR), Associative
Classification.

1 INTRODUCTION
Frequent patterns and their corresponding association rules
characterize interesting relationships between attribute conditions
and class labels, and thus have been recently used for effective
classification. Association rules show strong associations between
attribute-value pairs (or items) that occur frequently in a given
dataset. Association rules are commonly used to analyze the
purchasing patterns of customers in stores. Such analysis is useful
in many decision-making processes, such as product placement,
catalog design, and cross-marketing. The discovery of association
rules is based on frequent itemset mining.
Associative classification mining is a promising approach in data
mining that utilizes the association rule discovery techniques to
construct classification systems, also known as associative
classifiers. In the last few years, a number of associative
classification algorithms have been proposed such as CBA:
Classification based Association [11], CMAR: Classification
based on Multiple Association Rules [10], CPAR: Classification
based on Predicted Association Rule [13]. These algorithms
employ several different methods, such as rule discovery, rule
ranking, rule pruning, rule prediction and rule evaluation.
Machine learning is one of the main phases in knowledge
discovery from databases, which extracts useful patterns from
data. Associative classification (AC) is lately among the focus
areas in machine learning. AC integrates two known data mining
tasks, association rule discovery and classification. The main aim
is to build a model (classifier) for the purpose of prediction.
Classification and association rule discovery are similar tasks in
data mining, with the exception that the main aim of classification
is the prediction of class labels, while association rule discovery
describes correlations between items in a transactional database.
In the last few years, association rule discovery methods have
been successfully used to build accurate classifiers, which have
resulted in a branch of AC mining. Several studies [4,9,10,11]
have proved that AC algorithms are able to extract classifiers
competitive with those produced by decision trees [3,12], rule
induction [5,6,8] and probabilistic approaches [2].
In comparison with some traditional rule-based classification
approaches, associative classification has two main
characteristics. Firstly, it generates a large number of association
classification rules. Secondly, support and confidence thresholds
are applied to evaluate the significance of classification
association rules. However, associative classification has some
weaknesses. First, it often generates a very large number of

SiKDD 2019, October 2019, Ljubljana, Slovenia J. Mattiev et al.

classification association rules in association rule mining,
especially when the training dataset is large. It takes great efforts
to select a set of high quality classification rules among them.
Second, the accuracy of associative classification depends on the
setting of the minimum support and the minimum confidence.
Unbalanced datasets may heavily affect the accuracy of the
classifiers. Third, the efficiency of associative classification may
be also low, when the minimum support is set to be low and the
training dataset is large. Although associative classification has
some drawbacks, it can achieve higher accuracy than rule and
tree-based classification algorithms on certain real life datasets.
In this paper, we propose a simple classification method that
selects a reasonable number of rules for classification, then, we
find the overall coverage and average rule coverage of the
classifier. We perform experiments on 11 datasets from the UCI
Machine Learning Database Repository [7] and compare the
results with some of the well-known classification algorithms
(Naïve Bayes [2], PART [8], Ripper [6], C4.5 [12]).

2 PRELIMINARY CONCEPTS
Association rules consist of two parts, an antecedent (if) and a
consequent (then). An antecedent is an item found in the data. A
consequent is an item that is found in combination with the
antecedent. Association rules are generated from frequent itemset
by analyzing the dataset and support and confidence thresholds
are used to identify the most important relationships. Support is an
indication of how frequently the items appear in the
dataset. Confidence indicates the number of times the if/then
statements have been found to be true.
Associative classification is a special case of association rule
discovery in which only the class attribute is considered in the
rule’s right-hand side (consequent), for example, in a rule such as
XY, Y must be a class attribute. One of the main advantages of
using a classification based on association rules over classic
classification approaches is that the output of an AC algorithm is
represented in simple if–then rules, which makes it easy for the
end-user to understand and interpret it

Let D be a dataset with n attributes { 1A , 2A ,..., nA } that are

classified into M known classes and |D| objects. Let
𝑌 = {𝑦 , 𝑦 … . 𝑦 } be a list of class labels. A specific value of an

attribute iA and class Y is denoted by lower-case letters ima and

𝑦 respectively.

Definition 1. An itemset is a set of some pairs of attributes and a
specific value, denoted {(𝐴 , 𝑎), (𝐴 , 𝑎), … . , (𝐴 , 𝑎)}.
Definition 2. A class association rule R has the form
{(𝐴 , 𝑎), . , (𝐴 , 𝑎)} → 𝑦 where {(𝐴 , 𝑎), . , (𝐴 , 𝑎)} is

an itemset and 𝑦 ∈ 𝑌 is a class label.

Definition 3. The support count SuppCnt(R) of a rule R in D is the
number of records of D that match R's antecedent (left-hand side).
Definition 4. The support of rule R, denoted by Supp(R), is the
number of records of D that match R's antecedent and are labeled
with R's class.
Definition 5. The confidence of rule R, denoted by Conf(R), is
defined as follows: 𝐶𝑜𝑛𝑓(𝑅) = 𝑆𝑢𝑝𝑝(𝑅)/𝑆𝑢𝑝𝑝𝐶𝑛𝑡(𝑅).

3 PROBLEM DEFINITION
Our proposed research assumes that the dataset is a normal
relational table which has N examples described by L distinct
attributes. These N examples are classified into M known classes.
An attribute can be categorical (or nominal) or continuous (or
numeric). In this paper, we treat all the attributes uniformly.
Categorical attribute’s values are mapped to a set of consecutive
positive integers. Numeric attributes are discretized into intervals
(bins), and the intervals are also mapped to consecutive positive
integers. Discretization methods will not be discussed in this
paper as there are many existing algorithms in the machine
learning literature that can be used.
Our first goal is to generate the complete set of strong class
association rules that satisfy the user-specified minimum support
and minimum confidence constraints, and the second goal is to
extract a reasonable number of strong CARs by pruning to build a
simple and accurate classifier, the third and main goal is to find
the overall coverage, average rule coverage and accuracy of the
intended classifier.

4 OUR PROPOSED METHOD
Our proposed method consists of three steps. Firstly, a complete
set of strong class association rules is generated from the given
dataset. We then select a reasonable number of strong rules to
build our simple and accurate classifier in the second step. Finally,
we find the overall coverage, average rule coverage and accuracy
of the classifier.

4.1 Generating class association rules

Association rule generation is usually split up into two separate
steps:
1. First, we find all the frequent itemsets in a dataset by applying
minimum support threshold. This step is the most important one,
because, if minimum support is set to low, then we may have huge
number of rules that lead to combinatorial complexity. If
minimum support is set to high, then we may lose some
interesting or strong rules, therefore, appropriate minimum
support must be applied by analyzing the dataset.
2. Second, minimum confidence constraint is applied to generate
strong class association rules from these frequent itemsets
generated in the first step.
The second step is straightforward, that is why, we pay more
attention to the first step. Apriori is a seminal algorithm described
in [1] and it is mostly suggested for mining frequent itemsets.
Once the frequent itemsets from the dataset have been found, it is
straightforward to generate strong class association rules from
them (where strong CARs satisfy both minimum support and
minimum confidence constraints). This can be done using
following equation for confidence:

 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝐴 → 𝐵) =
𝑠𝑢𝑝𝑝𝑜𝑟𝑡_𝑐𝑜𝑢𝑛𝑡(𝐴 ∪ 𝐵)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡_𝑐𝑜𝑢𝑛𝑡(𝐴)
. (1)

The equation (1) is expressed in terms of itemsets support count,
where A is premises (itemsets that is left-hand side of the rule), B
is consequence (class label that is right-hand side of the rule),
support_count ()A B is the number of transactions containing

the itemsets A B , and support_count(A) is the number of

How overall coverage of class association rules affects the accuracy
of the classifier?

SiKDD 2019, October 2019, Ljubljana, Slovenia

transactions containing the itemsets A. Based on this equation,
CARs can be generated as follows:
● For each frequent itemset in L and class label C, generate all
nonempty subsets of L.
● For every nonempty subset S of L, output the rule “SC” if

_ ()

_ ()
≥ min _𝑐𝑜𝑛𝑓 , where min_ conf is the

minimum confidence threshold.

4.2 Building our proposed classifier

We build our intended simple classifier by extracting the
reasonable number of strong class association rules (already
satisfied the minimum support and confidence requirements) that
are generated in 4.1. Our proposed method is outlined in
Algorithm 1.

 Algorithm 1: Simple and accurate classification algorithm

 Input: a set of CARs with their support and confidence
constraints
 Output: a subset of rules for classification

 1: D= Dataset();
 2: F= frequent_itemsets(D);
 3: R= genCARs(F);
 4: R= sort(R, minconf, minsup);
 5: G=Group(R);
 6: for (k=1; k≤ numClass; k++) do begin
 7: X= extract(class[k], numrules);
 8: Classifier= Classifier.add(X);
 9: end
 10: for each rule 𝑦 ∈ 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 do begin
 11: if y classify new_example then
 12: class_count[y.class]++;
 13: end
 14: if max(class_count)==0 then
 15: predicted_class=majority_class(D);
 16: else predicted_class= index_of_max(class_count);
 17: return predicted_class

In lines 1-2 find all frequent itemsets in the dataset by using the
Apriori algorithm. Line 3 generates the strong class association
rules that satisfiy the minimum support and confidence constrains
from frequent itemsets. In line 4, CARs are sorted by confidence
and support in descending order as follow:
Given two rules 𝑅 and 𝑅 , R1 is said having higher rank than R2,
denoted as 𝑅 > 𝑅 ,

 If and only if, 𝑐𝑜𝑛𝑓(𝑅) > 𝑐𝑜𝑛𝑓(𝑅); or
 If 𝑐𝑜𝑛𝑓(𝑅) = 𝑐𝑜𝑛𝑓(𝑅) but, 𝑠𝑢𝑝𝑝(𝑅) > 𝑠𝑢𝑝𝑝(𝑅):

or
 If 𝑐𝑜𝑛𝑓(𝑅) = 𝑐𝑜𝑛𝑓(𝑅) and 𝑠𝑢𝑝𝑝(𝑅) =

𝑠𝑢𝑝𝑝(𝑅), 𝑅 has fewer attribute values in its left-hand
side than 𝑅 does;

Line 5 defines how to group the class association rules by their
class labels (for example, if the class has three values, then, rules
are grouped into three groups). In lines 6-9, we extract the
reasonable number of rules per class that are equal to numrules to

form a simple and accurate classifier. These set of rules become
our final classifier. In lines 10-13, classification is performed by
extracted CARs in line 6-9, if the rule can classify the example
correctly, then, we increase the corresponding class count by one
and store it. In lines 14-17, if none of the rules can classify the
example correctly, then, algorithm returns the majority class value
for the training dataset. Otherwise, it returns the majority class
value of correctly classified rules.

4.3 Overall coverage and average rule coverage

After our classifier is built in 4.2, it is straightforward to compute
the overall coverage and average rule coverage of the classifier.
To compute the overall coverage, we count the transactions that
are covered by the classifier and divide it to total number of
transactions in dataset. For the rule coverage, we count all the
transactions that are covered by each rule in classifier and we take
the average of them divided by total transactions.

 Algorithm 2: Overall and average rule coverage of the classifier

 Input: dataset and classifier
 Output: overall coverage and average rule coverage

 1: n=D.length();
 2: C= Classifier;
 3: fill(classified_example)=false;
 4: for (i=1; i≤ C.length(); i++) do begin
 5: for (j=1; j≤ n; j++) do begin
 6: if C[i].premise classifies D[j].premise then
 7: rulecover[i]++;
 8: classified_example[j]=true;
 9: end
 10: avg_rulecover=avg_rulecover+ rulecover[i]/n;
 11: end
 12: for (i=1; i≤ n; i++) do begin
 13: if classified_example[i] then
 14: count++;
 15: end
 16: Overallcover_dataset=count/n;
 17: return Overallcover_dataset, avg_rulecover

First line finds the length of the dataset. We form our classifier
introduced in 4.2 (method is already created in lines 6-9 of
algorithm 1) from the intended dataset in line 2. In the third line,
we fill all initial values of classified_example array as false. Lines
4-11generally find the average rule coverage of the classifier.
More precisely, we try to classify all the examples in the dataset
by our classifier in lines 5-9. If rule’s premise (left hand-side of
the rule) classifies the example’s premise (left hand-side of the
example) in the dataset, then we increase the count for that rule’s
coverage and we mark that example as classified (this helps to
compute the overall coverage of the dataset). Line 10 calculates
the average rule coverage. We count all correctly classified
examples in the dataset in lines 12-15 and overall coverage of the
dataset is found in line 16. Line 17 returns the overall coverage
and average rule coverage.

SiKDD 2019, October 2019, Ljubljana, Slovenia J. Mattiev et al.

5 EXPERIMENTAL RESULTS
To find out the overall coverage, average rule coverage and to
compare our results with some existing well-known classification
methods on accuracy, we performed experiments on 11 real-life
datasets from the UCI Machine Learning Database Repository.
We used the WEKA software to explore the classification
methods and 10 times random-split method (average result is

taken over 10 experiments) is used to perform experiments for
both our method and other classification methods. In order to get
enough rules for each class value and achieve a reasonable overall
coverage, the parameter “#Rules per class” was set to 50 for all
experiments. For other classification algorithms, Naive Bayes
(NB), C4.5, PART (PT) and JRip (JR), we set up the default
parameters.

Table 1. Overall coverage and average rule coverage

Dataset

attr

Cls

recs

Min
sup
(%)

Min
conf
(%)

#Rules
per class

Overall
coverage

(%)

Avg. rule
coverage

(%)

Accuracy (standard deviation) (%)
SA C4.5 PT JR NB

Breast.Cancr 10 2 286 5 70 50 77.2 6.83 74.8(3.1) 72.0(3.5) 69.9(2.7) 68.9(4.4) 72.7(2.9)
Vote 17 2 435 1 80 50 93.1 28.86 95.4(2.4) 95.1(1.8) 95.5(1.4) 95.5(1.1) 89.1(1.9)

Balance.Sc 5 3 625 1 80 50 87.6 3.04 80.2(2.5) 67.2(2.4) 77.3(3.2) 77.4(2.0) 91.9(2.2)
Car.Evn 7 4 1728 0.8 70 50 76.2 7.14 81.4(2.8) 89.5(1.5) 95.0(1.5) 83.4(2.5) 84.8(0.9)

Tic-tac-toe 10 2 958 3 80 50 71.9 2.67 84.4(2.4) 84.7(3.2) 89.3(2.8) 97.5(0.6) 69.9(1.9)
Nursary 9 5 12960 2 60 50 98.0 3.78 88.6(2.6) 96.2(0.4) 98.7(0.4) 95.9(0.3) 90.4(0.4)
Hayes 6 3 160 1 50 50 100.0 5.56 80.1(7.1) 76.0(4.2) 73.3(7.7) 79.3(5.5) 79.7(7.9)

Mushroom 23 2 8124 20 80 50 84.4 4.76 68.2(1.6) 68.1(0.8) 64.3(0.7) 68.8(2.9) 69.7(0.5)
Lymp 19 4 148 3 70 50 81.0 18.76 75.3(6.4) 80.0(3.6) 79.0(6.9) 81.0(6.7) 85.1(4.1)
Monks 7 2 554 1 70 50 93.0 2.93 94.3(2.2) 98.4(2.7) 98.4(2.4) 98.4(2.2) 96.2(2.0)
Spect 23 2 267 0.5 60 50 81.4 27.21 78.6(3.1) 70.6(2.3) 67.1(5.3) 70.2(3.3) 69.9(4.1)

Average 85.8 10.14 81.9(3.3) 81.6(2.0) 82.5(3.2) 83.3(2.9) 81.8(2.6)

By analyzing the table of results (Table 1) we can observe that our
classifier achieved better average accuracy than C4.5 and Naïve
Bayes (81.9, 81.6 and 81.8 respectively). Standard deviations
were higher for all methods on “Hayes” and “Lymp” datasets, that
is, the differences between accuracies fluctuated and were
reasonable high in 10 times random-split experiments. The overall
coverages were lower than 80% on “Breast cancer”, “Car
evaluation” and “Tic-tac-toe” and in those cases also the accuracy
is slightly worse than that of the “classical” classifiers. On almost
all other datasets our method achieves similar or slightly better
accuracy. On the other hand, average rule coverage is surprisingly
high on “Vote”, “Lymp” and “Spect” datasets, but seems to have
no effect on classification accuracy.

6 CONCLUSION AND FUTURE WORK
Our comparison on selected 11 UCI ML datasets shows that with
decreasing overall coverage our proposed method tends to get
slightly worse classification accuracy than the “classical”
classification rule learning algorithms. This fact is not surprising,
since uncovered examples get classified by the majority classifier.
When the overall coverage is above 85%, the accuracies of our
classifier is similar or (on some datasets) ever better then Naive
Bayes and C4.5. On the other hand, the average rule coverage of
our proposed method seems to have no effect on classification
accuracy.
This research shows that overall rule coverage should be
considered when selecting (pruning) the “appropriate” class
association rules which we plan to implement in future research.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the European Commission
for funding the InnoRenew CoE project (Grant Agreement
#739574) under the Horizon2020 Widespread-Teaming program

and the Republic of Slovenia (Investment funding of the Republic
of Slovenia and the European Union of the European Regional
Development Fund).

REFERENCES
[1] Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In:

VLDB '94 Proceedings of the 20th International Conference on Very Large
Data Bases, pp. 487-499. Chile (1994).

[2] Baralis, E., Cagliero, L., Garza, P.: A novel pattern-based Bayesian classifier.
IEEE Transactions on Knowledge and Data Engineering 25(12), 2780–2795
(2013).

[3] Breiman, L.: Random Forests. Machine Learning 45(1), pp. 5-32 (2001).
[4] Chen, G., Liu, H., Yu, L., Wei, Q., Zhang, X.: A new approach to classification

based on association rule mining. Decision Support Systems 42(2), 674–689
(2006).

[5] Clark, P., Niblett, T.: The CN2 induction algorithm. Machine Learning, 3(4),
261–283 (1989).

[6] Cohen, W., W.: Fast Effective Rule Induction. In: ICML'95 Proceedings of the
Twelfth International Conference on Machine Learning, pp. 115-123, Tahoe
City, California (1995).

[7] Dua, D., Graff, C.: UCI Machine Learning Repository, Irvine, CA: University
of California (2019).

[8] Frank, E., Witten, I.: Generating Accurate Rule Sets Without Global
Optimization. In: Fifteenth International Conference on Machine Learning, pp.
144-151. USA (1998).

[9] Hu, L, Y., Hu, Y, Han., Tsai, C, F., Wang, J, S., Huang, M, W.: Building an
associative classifier with multiple minimum supports, SpringerPlus, 5:528,
(2016).

[10] Li, W., Han, J., Pei, J.: CMAR: accurate and efficient classification based on
multiple class-association rules. in Proceedings of the 1st IEEE International
Conference on Data Mining (ICDM ’01), pp. 369–376, San Jose, California,
USA (2001).

[11] Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining.
in Proceedings of the 4th International Conference on Knowledge Discovery
and Data Mining (KDD ’98), pp. 80–86, New York, USA (1998).

[12] Quinlan, J.: C4.5: Programs for Machine Learning, Machine Learning 16(3),
235-240 (1993).

[13] Xiaoxin, Y., Jiawei, H. CPAR: Classification based on Predictive Association
Rules. Proceedings of the SIAM International Conference on Data Mining, pp.
331-335, San Francisco, U.S.A (2003).

