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ABSTRACT 
Associative classification (AC) is a data mining approach that 
combines classification and association rule mining to build 
classification models (classifiers). Experimental results show that 
in average the CBA-based approaches could achieve higher 
accuracy than some of the traditional classification methods.  
In this paper, we focus on associative classification, where class 
association rules are generated and analyzed to build a simple, 
compact, understandable and relatively accurate classifier. 
Furthermore, we discuss how overall coverage and average rule 
coverage of such classifiers affect their classification accuracy. 
We compare our method that uses constrained exhaustive search 
with some “classical” classification rule learning algorithm that 
uses greedy heuristic search on accuracy in some “real-life” 
datasets. We have performed experiments on 11 datasets from 
UCI Machine Learning Database Repository. 
Experimental evaluation shows that with decreasing overall 
coverage our proposed method tends to get slightly worse 
classification accuracy than the “classical” classification rule 
learning algorithms. Otherwise, the accuracy is similar or on some 
datasets even better than Naive Bayes and C4.5. On the other 
hand, the average rule coverage of our proposed method seems to 
have no effect on classification accuracy.  

CCS CONCEPTS 
• Computing methodologies → Machine learning → Machine 
learning approaches → Rule learning  
• Computing methodologies → Machine learning → Cross-
validation 

• Computing methodologies → Machine learning → Learning 
paradigms → Supervised learning → Supervised learning by 
classification 

KEYWORDS 
Attribute, frequent Itemset, Minimum Support, Minimum 
Confidence, Class Association Rules (CAR), Associative 
Classification. 

 

 

1 INTRODUCTION 
Frequent patterns and their corresponding association rules 
characterize interesting relationships between attribute conditions 
and class labels, and thus have been recently used for effective 
classification. Association rules show strong associations between 
attribute-value pairs (or items) that occur frequently in a given 
dataset. Association rules are commonly used to analyze the 
purchasing patterns of customers in stores. Such analysis is useful 
in many decision-making processes, such as product placement, 
catalog design, and cross-marketing. The discovery of association 
rules is based on frequent itemset mining. 
Associative classification mining is a promising approach in data 
mining that utilizes the association rule discovery techniques to 
construct classification systems, also known as associative 
classifiers. In the last few years, a number of associative 
classification algorithms have been proposed such as CBA: 
Classification based Association [11], CMAR: Classification 
based on Multiple Association Rules [10], CPAR: Classification 
based on Predicted Association Rule [13]. These algorithms 
employ several different methods, such as rule discovery, rule 
ranking, rule pruning, rule prediction and rule evaluation. 
Machine learning is one of the main phases in knowledge 
discovery from databases, which extracts useful patterns from 
data. Associative classification (AC) is lately among the focus 
areas in machine learning. AC integrates two known data mining 
tasks, association rule discovery and classification. The main aim 
is to build a model (classifier) for the purpose of prediction. 
Classification and association rule discovery are similar tasks in 
data mining, with the exception that the main aim of classification 
is the prediction of class labels, while association rule discovery 
describes correlations between items in a transactional database. 
In the last few years, association rule discovery methods have 
been successfully used to build accurate classifiers, which have 
resulted in a branch of AC mining. Several studies [4,9,10,11] 
have proved that AC algorithms are able to extract classifiers 
competitive with those produced by decision trees [3,12], rule 
induction [5,6,8] and probabilistic approaches [2].  
In comparison with some traditional rule-based classification 
approaches, associative classification has two main 
characteristics. Firstly, it generates a large number of association 
classification rules. Secondly, support and confidence thresholds 
are applied to evaluate the significance of classification 
association rules. However, associative classification has some 
weaknesses. First, it often generates a very large number of 
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classification association rules in association rule mining, 
especially when the training dataset is large. It takes great efforts 
to select a set of high quality classification rules among them. 
Second, the accuracy of associative classification depends on the 
setting of the minimum support and the minimum confidence. 
Unbalanced datasets may heavily affect the accuracy of the 
classifiers. Third, the efficiency of associative classification may 
be also low, when the minimum support is set to be low and the 
training dataset is large. Although associative classification has 
some drawbacks, it can achieve higher accuracy than rule and 
tree-based classification algorithms on certain real life datasets. 
In this paper, we propose a simple classification method that 
selects a reasonable number of rules for classification, then, we 
find the overall coverage and average rule coverage of the 
classifier. We perform experiments on 11 datasets from the UCI 
Machine Learning Database Repository [7] and compare the 
results with some of the well-known classification algorithms 
(Naïve Bayes [2], PART [8], Ripper [6], C4.5 [12]). 

2 PRELIMINARY CONCEPTS 
Association rules consist of two parts, an antecedent (if) and a 
consequent (then). An antecedent is an item found in the data. A 
consequent is an item that is found in combination with the 
antecedent. Association rules are generated from frequent itemset 
by analyzing the dataset and support and confidence thresholds 
are used to identify the most important relationships. Support is an 
indication of how frequently the items appear in the 
dataset. Confidence indicates the number of times the if/then 
statements have been found to be true. 
Associative classification is a special case of association rule 
discovery in which only the class attribute is considered in the 
rule’s right-hand side (consequent), for example, in a rule such as 
XY, Y must be a class attribute. One of the main advantages of 
using a classification based on association rules over classic 
classification approaches is that the output of an AC algorithm is 
represented in simple if–then rules, which makes it easy for the 
end-user to understand and interpret it 

Let D be a dataset with n attributes { 1A , 2A ,..., nA } that are 

classified into M known classes and |D| objects. Let                   
𝑌 = {𝑦ଵ, 𝑦ଶ … . 𝑦௠} be a list of class labels. A specific value of an 

attribute iA  and class Y is denoted by lower-case letters ima  and  

𝑦௝  respectively. 

Definition 1. An itemset is a set of some pairs of attributes and a 
specific value, denoted {(𝐴௜ଵ, 𝑎௜ଵ), (𝐴௜ଶ, 𝑎௜ଶ), … . , (𝐴௜௠ , 𝑎௜௠)}. 
Definition 2. A class association rule R has the form 
{(𝐴௜ଵ, 𝑎௜ଵ), . , (𝐴௜௠ , 𝑎௜௠)} → 𝑦௝  where {(𝐴௜ଵ, 𝑎௜ଵ), . , (𝐴௜௠ , 𝑎௜௠)} is 

an itemset and  𝑦௝ ∈ 𝑌 is a class label.     

Definition 3. The support count SuppCnt(R) of a rule R in D is the 
number of records of D that match R's antecedent (left-hand side). 
Definition 4. The support of rule R, denoted by Supp(R), is the 
number of records of D that match R's antecedent and are labeled 
with R's class. 
Definition 5. The confidence of rule R, denoted by Conf(R), is 
defined as follows:   𝐶𝑜𝑛𝑓(𝑅) = 𝑆𝑢𝑝𝑝(𝑅)/𝑆𝑢𝑝𝑝𝐶𝑛𝑡(𝑅). 

3 PROBLEM DEFINITION 
Our proposed research assumes that the dataset is a normal 
relational table which has N examples described by L distinct 
attributes. These N examples are classified into M known classes. 
An attribute can be categorical (or nominal) or continuous (or 
numeric). In this paper, we treat all the attributes uniformly. 
Categorical attribute’s values are mapped to a set of consecutive 
positive integers. Numeric attributes are discretized into intervals 
(bins), and the intervals are also mapped to consecutive positive 
integers. Discretization methods will not be discussed in this 
paper as there are many existing algorithms in the machine 
learning literature that can be used.  
Our first goal is to generate the complete set of strong class 
association rules that satisfy the user-specified minimum support 
and minimum confidence constraints, and the second goal is to 
extract a reasonable number of strong CARs by pruning to build a 
simple and accurate classifier, the third and main goal is to find 
the overall coverage, average rule coverage and accuracy of the 
intended classifier. 

4 OUR PROPOSED METHOD 
Our proposed method consists of three steps. Firstly, a complete 
set of strong class association rules is generated from the given 
dataset. We then select a reasonable number of strong rules to 
build our simple and accurate classifier in the second step. Finally, 
we find the overall coverage, average rule coverage and accuracy 
of the classifier. 

4.1  Generating class association rules 

Association rule generation is usually split up into two separate 
steps:                           
1. First, we find all the frequent itemsets in a dataset by applying 
minimum support threshold. This step is the most important one, 
because, if minimum support is set to low, then we may have huge 
number of rules that lead to combinatorial complexity. If 
minimum support is set to high, then we may lose some 
interesting or strong rules, therefore, appropriate minimum 
support must be applied by analyzing the dataset.                            
2. Second, minimum confidence constraint is applied to generate 
strong class association rules from these frequent itemsets 
generated in the first step. 
The second step is straightforward, that is why, we pay more 
attention to the first step. Apriori is a seminal algorithm described 
in [1] and it is mostly suggested for mining frequent itemsets. 
Once the frequent itemsets from the dataset have been found, it is 
straightforward to generate strong class association rules from 
them (where strong CARs satisfy both minimum support and 
minimum confidence constraints). This can be done using 
following equation for confidence: 

         𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝐴 → 𝐵) =
𝑠𝑢𝑝𝑝𝑜𝑟𝑡_𝑐𝑜𝑢𝑛𝑡(𝐴 ∪ 𝐵)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡_𝑐𝑜𝑢𝑛𝑡(𝐴)
.           (1) 

The equation (1) is expressed in terms of itemsets support count, 
where A is premises (itemsets that is left-hand side of the rule), B 
is consequence (class label that is right-hand side of the rule),  
support_count ( )A B  is the number of transactions containing 

the itemsets A B , and  support_count(A) is the number of 
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transactions containing the itemsets A. Based on this equation, 
CARs can be generated as follows: 
● For each frequent itemset in L and class label C, generate all 
nonempty subsets of L. 
● For every nonempty subset S of L, output the rule “SC” if  
௦௨௣௣௢௥௧_௖௢௨௡௧(௅)

௦௨௣௣௢௥௧_௖௢௨௡௧(ௌ)
≥ min _𝑐𝑜𝑛𝑓 , where min_ conf is the 

minimum confidence threshold. 

4.2  Building our proposed classifier 

We build our intended simple classifier by extracting the 
reasonable number of strong class association rules (already 
satisfied the minimum support and confidence requirements) that 
are generated in 4.1. Our proposed method is outlined in 
Algorithm 1.  

 
   Algorithm 1: Simple and accurate classification algorithm 

 
   Input: a set of CARs with their support and confidence 
constraints   
   Output: a subset of rules for classification 

     1:     D= Dataset();      
     2:     F= frequent_itemsets(D); 
     3:      R= genCARs(F); 
     4:      R= sort(R, minconf, minsup); 
     5:     G=Group(R); 
     6:            for (k=1; k≤ numClass; k++) do begin 
     7:                   X= extract(class[k], numrules); 
     8:                   Classifier= Classifier.add(X); 
     9:      end 
     10:      for each rule 𝑦 ∈ 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 do begin 
     11:                   if y classify new_example then 
     12:                   class_count[y.class]++; 
     13:       end 
     14:           if  max(class_count)==0  then 
     15:                   predicted_class=majority_class(D); 
     16:       else  predicted_class= index_of_max(class_count); 
     17:      return  predicted_class 

 

In lines 1-2 find all frequent itemsets in the dataset by using the 
Apriori algorithm. Line 3 generates the strong class association 
rules that satisfiy the minimum support and confidence constrains 
from frequent itemsets. In line 4, CARs are sorted by confidence 
and support in descending order as follow:  
Given two rules 𝑅ଵ and 𝑅ଶ, R1 is said having higher rank than R2, 
denoted as 𝑅ଵ > 𝑅ଶ, 

 If and only if,  𝑐𝑜𝑛𝑓(𝑅ଵ) > 𝑐𝑜𝑛𝑓(𝑅ଶ);  or 
 If 𝑐𝑜𝑛𝑓(𝑅ଵ) = 𝑐𝑜𝑛𝑓(𝑅ଶ) but, 𝑠𝑢𝑝𝑝(𝑅ଵ) > 𝑠𝑢𝑝𝑝(𝑅ଶ): 

or 
 If 𝑐𝑜𝑛𝑓(𝑅ଵ) = 𝑐𝑜𝑛𝑓(𝑅ଶ) and 𝑠𝑢𝑝𝑝(𝑅ଵ) =

𝑠𝑢𝑝𝑝(𝑅ଶ),  𝑅ଵ has fewer attribute values in its left-hand 
side than 𝑅ଶ does; 

Line 5 defines how to group the class association rules by their 
class labels (for example, if the class has three values, then, rules 
are grouped into three groups). In lines 6-9, we extract the 
reasonable number of rules per class that are equal to numrules to 

form a simple and accurate classifier. These set of rules become 
our final classifier. In lines 10-13, classification is performed by 
extracted CARs in line 6-9, if the rule can classify the example 
correctly, then, we increase the corresponding class count by one 
and store it. In lines 14-17, if none of the rules can classify the 
example correctly, then, algorithm returns the majority class value 
for the training dataset. Otherwise, it returns the majority class 
value of correctly classified rules. 

4.3  Overall coverage and average rule coverage  

After our classifier is built in 4.2, it is straightforward to compute 
the overall coverage and average rule coverage of the classifier. 
To compute the overall coverage, we count the transactions that 
are covered by the classifier and divide it to total number of 
transactions in dataset. For the rule coverage, we count all the 
transactions that are covered by each rule in classifier and we take 
the average of them divided by total transactions. 

 
   Algorithm 2: Overall and average rule coverage of the classifier 

 
   Input: dataset and classifier   
   Output: overall coverage and average rule coverage 

     1:  n=D.length(); 
     2:  C= Classifier; 
     3: fill(classified_example)=false; 
     4: for (i=1; i≤ C.length(); i++) do begin 
     5:               for (j=1; j≤ n; j++) do begin 
     6:                      if C[i].premise classifies D[j].premise then 
     7:         rulecover[i]++; 
     8:         classified_example[j]=true; 
     9:             end 
     10:    avg_rulecover=avg_rulecover+ rulecover[i]/n; 
     11:  end 
     12:      for (i=1; i≤ n; i++) do begin 
     13:             if classified_example[i] then 
     14:                count++; 
     15: end 
     16:     Overallcover_dataset=count/n; 
     17: return Overallcover_dataset, avg_rulecover 

 

First line finds the length of the dataset. We form our classifier 
introduced in 4.2 (method is already created in lines 6-9 of 
algorithm 1) from the intended dataset in line 2. In the third line, 
we fill all initial values of classified_example array as false. Lines 
4-11generally find the average rule coverage of the classifier. 
More precisely, we try to classify all the examples in the dataset 
by our classifier in lines 5-9. If rule’s premise (left hand-side of 
the rule) classifies the example’s premise (left hand-side of the 
example) in the dataset, then we increase the count for that rule’s 
coverage and we mark that example as classified (this helps to 
compute the overall coverage of the dataset). Line 10 calculates 
the average rule coverage. We count all correctly classified 
examples in the dataset in lines 12-15 and overall coverage of the 
dataset is found in line 16. Line 17 returns the overall coverage 
and average rule coverage. 

 



SiKDD 2019, October 2019, Ljubljana, Slovenia J. Mattiev et al. 
 

 

 

5 EXPERIMENTAL RESULTS 
To find out the overall coverage, average rule coverage and to 
compare our results with some existing well-known classification 
methods on accuracy, we performed experiments on 11 real-life 
datasets from the UCI Machine Learning Database Repository. 
We used the WEKA software to explore the classification 
methods and 10 times random-split method (average result is 

taken over 10 experiments) is used to perform experiments for 
both our method and other classification methods. In order to get 
enough rules for each class value and achieve a reasonable overall 
coverage, the parameter “#Rules per class” was set to 50 for all 
experiments. For other classification algorithms, Naive Bayes 
(NB), C4.5, PART (PT) and JRip (JR), we set up the default 
parameters. 

Table 1. Overall coverage and average rule coverage 

 
Dataset 

# 
attr 

#  
Cls 

#  
recs 

Min 
sup 
(%) 

Min  
conf 
(%) 

#Rules 
per class 

Overall 
coverage 

(%) 

Avg. rule 
coverage 

(%) 

Accuracy (standard deviation) (%) 
SA C4.5 PT JR NB 

Breast.Cancr 10 2 286 5 70 50 77.2 6.83 74.8(3.1) 72.0(3.5) 69.9(2.7) 68.9(4.4) 72.7(2.9) 
Vote 17 2 435 1 80 50 93.1 28.86 95.4(2.4) 95.1(1.8) 95.5(1.4) 95.5(1.1) 89.1(1.9) 

Balance.Sc 5 3 625 1 80 50 87.6 3.04 80.2(2.5) 67.2(2.4) 77.3(3.2) 77.4(2.0) 91.9(2.2) 
Car.Evn 7 4 1728 0.8 70 50 76.2 7.14 81.4(2.8) 89.5(1.5) 95.0(1.5) 83.4(2.5) 84.8(0.9) 

Tic-tac-toe 10 2 958 3 80 50 71.9 2.67 84.4(2.4) 84.7(3.2) 89.3(2.8) 97.5(0.6) 69.9(1.9) 
Nursary 9 5 12960 2 60 50 98.0 3.78 88.6(2.6) 96.2(0.4) 98.7(0.4) 95.9(0.3) 90.4(0.4) 
Hayes 6 3 160 1 50 50 100.0 5.56 80.1(7.1) 76.0(4.2) 73.3(7.7) 79.3(5.5) 79.7(7.9) 

Mushroom 23 2 8124 20 80 50 84.4 4.76 68.2(1.6) 68.1(0.8) 64.3(0.7) 68.8(2.9) 69.7(0.5) 
Lymp 19 4 148 3 70 50 81.0 18.76 75.3(6.4) 80.0(3.6) 79.0(6.9) 81.0(6.7) 85.1(4.1) 
Monks 7 2 554 1 70 50 93.0 2.93 94.3(2.2) 98.4(2.7) 98.4(2.4) 98.4(2.2) 96.2(2.0) 
Spect 23 2 267 0.5 60 50 81.4 27.21 78.6(3.1) 70.6(2.3) 67.1(5.3) 70.2(3.3) 69.9(4.1) 

Average 85.8 10.14 81.9(3.3)  81.6(2.0) 82.5(3.2) 83.3(2.9) 81.8(2.6) 

By analyzing the table of results (Table 1) we can observe that our 
classifier achieved better average accuracy than C4.5 and Naïve 
Bayes (81.9, 81.6 and 81.8 respectively). Standard deviations 
were higher for all methods on “Hayes” and “Lymp” datasets, that 
is, the differences between accuracies fluctuated and were 
reasonable high in 10 times random-split experiments. The overall 
coverages were lower than 80% on “Breast cancer”, “Car 
evaluation” and “Tic-tac-toe” and in those cases also the accuracy 
is slightly worse than that of the “classical” classifiers. On almost 
all other datasets our method achieves similar or slightly better 
accuracy. On the other hand, average rule coverage is surprisingly 
high on “Vote”, “Lymp” and “Spect” datasets, but seems to have 
no effect on classification accuracy. 

6 CONCLUSION AND FUTURE WORK 
Our comparison on selected 11 UCI ML datasets shows that with 
decreasing overall coverage our proposed method tends to get 
slightly worse classification accuracy than the “classical” 
classification rule learning algorithms. This fact is not surprising, 
since uncovered examples get classified by the majority classifier. 
When the overall coverage is above 85%, the accuracies of our 
classifier is similar or (on some datasets) ever better then Naive 
Bayes and C4.5. On the other hand, the average rule coverage of 
our proposed method seems to have no effect on classification 
accuracy.  
This research shows that overall rule coverage should be 
considered when selecting (pruning) the “appropriate” class 
association rules which we plan to implement in future research. 
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