
Demand Forecasting for Industry 4.0: predicting discrete demand 
from multiple sources for B2B domain

Jože Martin Rožanec† 
 Qlector d.o.o. 

 Jožef Stefan Institute International 
Postgraduate School 
 Ljubljana, Slovenia 

 joze.rozanec@qlector.com 

Dunja Mladenić 
 Jožef Stefan Institute 

 Jožef Stefan Institute International 
Postgraduate School 
 Ljubljana, Slovenia 

 dunja.mladenic@ijs.si 

Blaž Fortuna 
 Qlector d.o.o. 

Jožef Stefan Institute International 
Postgraduate School 
 Ljubljana, Slovenia 

blaz.fortuna@qlector.com

ABSTRACT 
Demand is the amount of certain product required by buyers at a point in 
time. Demand forecasting tries to predict future demand based on available 
information. It is considered a key component of each manufacturing 
company since improvements on it translate directly to resources planning, 
stocks and overall operations.  
In the context of Industry 4.0, industry digitalization provides an ever-
increasing number of data sources which can be consumed to gain visibility 
over all operations and used to optimize different processes within it. This 
also opens new possibilities into the field of demand forecasting, where 
multiple data sources can be integrated to get timely data for accurate 
forecasts. 
We describe an efficient approach for demand forecasting for discrete 
components B2B industry. The proposed approach provides as good or 
better forecasts as logisticians for most months in six months period and 
achieves savings considering all test months period. 
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1 INTRODUCTION 
Demand forecasting is the task of predicting the number of units of a 
specific good for a given point of time in the future before we actually get 
all orders from the customers. It is a critical factor in just-in-time supply 
chains, where companies are expected to offer short lead times for products 
with complex production processes made of raw materials or components 
with longer lead times. In this paper we focus on solving this task by using 
machine learning techniques. 
As a socioeconomic phenomenon there are many aspects that may enhance 
predictions when captured into features, such as economic context (does 
demand increase with economic growth, how it is affected by price changes, 
are there substitute products, what kind of market do we operate on), other 
context facts (marketing campaigns, fashionable features, product 
established in market or a new release) or inherent product properties 

(product category, whether is perishable, etc.). By considering a wider 
context, we may mitigate demand signal distortions that happen at each new 
intermediary level of a supply chain, in what is known as the bullwhip effect 
[1]. Another factor of uncertainty is the forecasting horizon: further the 
horizon, less likely is to be the future similar to past and present state of 
matters and more difficult to be predicted accurately [2]. 
When considering forecasting techniques, it may be important to consider 
characteristics of demand. Authors discriminate demand along two main 
variables: by considering variability in demand timing and quantity. A 
classification scheme is described in Figure 1.  

 
Figure 1: demand classification as per Williams et al. [3] and further 

elaborated in [4] 
 

In our case we focus on demand forecasting for items from the B2B discrete 
manufacturing industry which are established in the market and sold under 
perfect market conditions. Since most of the products correspond to fast 
moving inventory, we do not discriminate between different demand types 
and treat all the products in the same way. 
Publications addressing demand forecasting explored auto-regressive 
moving averages [5, 6, 7, 8], multiple linear regression [9] (MLR), Bayesian 
approaches [10], support vector regressors (SVR) [11] and artificial neural 
networks (ANN) [12]. In our research we consider naïve forecasting (last 
observed value as prediction), auto-regressive moving average (ARIMA), 
MLR, SVR and gradient boosted regression trees (GBRT) [13] models and 
compare them to logisticians predictions issued in two points in time: six 
weeks and three days before the event. We do not consider ANNs due to 
our limited amount of available data to train them. 
The remainder of this paper is structured as follows. In Section 2, we define 
the problem, features, metrics and briefly describe forecasting techniques. 
Section 3 describe our dataset and preprocessing steps. In Section 4 we 
describe the experiments we conducted and results we obtained. Section 5 
presents conclusions and directions for further work. 
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2 PROBLEM DEFINITION 
Demand forecasting requires to predict the number of units for a product 
that will be ordered at a given future point in time. We consider different 
time horizons: H1, … Hn, and train a specific model for each of them. The 
goal is to make accurate predictions about future demand based on historical 
demand data, annual sales plans, open sales orders and some contextual 
information. 

2.1 Features 
The main features we obtain from datasets correspond to historical data 
describing observed demand for each product, high-level estimations such 
as annual forecasts (describe expected product demand over the year), low-
level demand proxies such as open sales orders for a given point in time, 
and contextual data (economic indicators, prices for relevant raw materials, 
vacation periods at buyers and manufacturer companies). 
Derivative features are meant to explore the relation between the original 
variables as well as how do they relate to each other in different points in 
time. This way they reflect the direction and magnitude of trends in 
comparison to previous months. Months immediately before the target date 
provide information about recent demand and context behavior, while 
values from the same months but considered a year before help to learn 
seasonality patterns where it may exist. 
The annual sales forecast and open sales orders give us some insight to the 
expected future. The annual forecast displays total amount to be sold over 
the year and a projected sales distribution. Open sales orders give us a weak 
signal about expected demand and may help to better estimate the target 
value given the rest of the feature’s context. Both can also be related to learn 
if projected sales accurately reflect the annual forecast, differ by some factor 
or may not follow original expectations at all. In a similar way we learn past 
relations between projected and real demand as well as the relation between 
open sales at a given point in time and later demand realization. 
Since we have two forecasting horizons with a six weeks separation and 
data available at a monthly frequency, we are able to compute additional 
features for models aimed to predict three days before the event horizon. 

2.2 Metrics 
To measure forecast performance across models we chose the mean 
absolute error metric. This metric is not sensitive to occasional large errors, 
which is important in the context of demand forecasting, where at specific 
points in time demand may display abnormal behavior that cannot be 
forecasted. The model should not be strongly penalized on them when 
trained. The metric also provides a straightforward interpretation (errors are 
measured in the same units as data and error magnitudes directly correlate 
on how well/bad the model performs). This does not turn into an issue when 
comparing different models, since by working on same dataset, we measure 
all models in same units and magnitudes.  
We use the same metric as objective and evaluation metric for models we 
train. 

2.3 Prediction techniques 
We take into account five types of forecasting techniques: naïve forecasting, 
autoregressive integrated moving average (ARIMA), multiple linear 
regression (MLR), support vector regressor (SVR) and gradient boosted 
regression trees (GBRT). ARIMA and MLR are widely used in the literature 
to forecast fast moving products, while gradient boosted regression trees, to 
the extent of our knowledge, were not applied to demand forecasting in the 
B2B manufacturing industry. 
Naïve forecasting method considers that the value to take place at time t+1 
will be close to the one present at time t and thus the best proxy is to use the 
same value of time t as prediction. In our case we consider the last demand 
value we are able to observe given a time horizon as the output value of our 
prediction. 
ARIMA is a stochastic time series method that grounds its predictions on 
three components: auto-regression (estimates white noise affecting the data 
by regressing the variable on own past values), integration (reduction of 

seasonality and trend by differencing the time series) and moving average 
(considers previous values to estimate the target value). 
Both, the naïve forecasting and ARIMA are limited only to demand 
forecasting historic values and cannot consider a broader context in their 
predictions. 
MLR is a simple method that explains linear relationships between a 
continuous dependent variable and multiple independent ones. The 
independent variables may be continuous or one-hot encoded categorical 
ones.  
SVR is a regression method based on support vectors, where a kernel is used 
to map low dimensional data into a higher dimension and then best 
hyperplane and boundary lines are computed to predict target values. The 
method allows to fit the error within a certain threshold. In our case we use 
a radial basis function kernel (RBF kernel), which helps us to consider non-
linear relationships between features. 
GBRT makes use of gradient boosting, which generalizes boosting to an 
arbitrary loss function, and uses regression trees to approximate the 
negative gradient. These are built iteratively, each tree representing a step 
of gradient descent when optimizing the loss function. 

3 DATA DESCRIPTION 

3.1 Dataset 
Our dataset was provided by manufacturing B2B industries and contains 
information about 69 products over a period of 68 months. 
Among features we have historic demand data for all products, annual 
demand plans and open sales orders when the forecast is issued. Our 
prediction target is the amount of a certain product to be demanded by 
buyers for a given month - on two prediction horizons: six weeks and three 
days ahead. 

3.2 Data preparation 
Given the original dataset, we first analyzed data density. We found that 
there are multiple products with scarce demand datapoints due to irregular 
demand or by the fact that started being produced later in time. Since 
demand points density may affect model results, we decided to create 
multiple datasets based on how many points of historical demand data do 
we have - all with identical features. This way for all experiments 
performed, we have datasets with 0+, 10+, 20+, 30+, 40+ and 50+ demand 
history points. 

  
Figure 2: product coverage by dataset. 

 
We then analyzed data distributions and observed that most features display 
Normal distributions when considering a single product, but over the whole 
dataset the distribution is lognormal. To mitigate this issue and differences 
in orders of magnitude, we first transformed them using a Yeo-Johnson 
transformation followed by standard scaling and a Min-Max 
transformation. The Yeo-Johnson transformation [14] ensures transformed 
values follow a Gaussian distribution, while the standard scaling centers 
them around zero with a standard deviation of one. By using the Min-Max 
transformation we get them into [0-1] range regardless of their original 
magnitudes. We also observed that some materials exhibit seasonality and 
trend but did not perform any ad-hoc preprocessing for them.   
Among computed features, there are many that refer to past performance 
(same month or months close to it, for current year as well as the year 
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before). This cannot be computed where we lack enough history and thus 
decided to compute them and then prune the dataset to last 56 months to 
discard spurious values. 
Considering that demand forecasting models are time sensitive, we use last 
six months for testing and devote the rest to train the models. We do so in 
such a way that the train set is not fixed, but we use all data up to the month 
to be predicted for training. By doing so, we had more records available to 
train models targeted towards last months and could ensure time proximity 
towards them. 
We devote a month close to the test set as validation set. We performed an 
experiment to understand if excluding validation set the data from the train 
set affects results by degrading predictions or if including it causes the 
model to overfit. Results showed that including the validation set into the 
training set improved results without risk of overfitting and thus used this 
setup for the experiments. 
The dataset with all features described is used for the MLR and GBRT 
models, while the naïve and ARIMA models use only historic demand data 
for a given product up to the month when the prediction shall be made. 

4 EXPERIMENTS AND RESULTS 
All experiments above were performed on datasets with demand records 
density of 0+, 10+, 20+, 30+, 40+ and 50+ records, to understand the 
tradeoff between data completeness and a greater number of records reflects 
in forecast results. In all cases we devote last six months to testing, and the 
rest of the data to train the model.  
We use the following notation to describe models: ModelName-FeatureSet-
Transform-DatasetFiltering 
Valid ModelName values are SVR, MLR and GBRT; FeatureSets can be 
3m, 6m, 9m and 12m – notating that features were computed over a window 
of three, six, nine or twelve months. Transform can be “wTT” if transforms 
were applied to dataset target, otherwise we use “nTT”. DatasetFiltering 
accepts three possible values: “2Y”, “3Y” or “4Y” indicating that the dataset 
contains train records for two, three or four years respectively plus six 
months of test data. 
Results are expressed in error ratio, computed as: 

𝑀𝑜𝑑𝑒𝑙	𝐸𝑟𝑟𝑜𝑟	𝑅𝑎𝑡𝑖𝑜 = 1 −
𝑀𝐴𝐸	𝑀𝑜𝑑𝑒𝑙

𝑀𝐴𝐸	𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑖𝑎𝑛 

4.1 Feature set comparison 
First experiment we performed was to understand how many months we 
should consider when looking back to create features in order to make better 
predictions. To this purpose, we developed four sets of features, created 
with a time window of three, six, nine and twelve months from target date.  
When considering a six weeks horizon, we found out that best results were 
achieved by GBRT-9m-nTT-4Y and GBRT-6m-nTT-4Y, followed by 
GBRT-3m-nTT-4Y which accounts for half of second-best predictions. For 
a three-day horizon, most best results were achieved by GBRT-3m-nTT-
4Y, making best prediction for half of datasets and second-best prediction 
for two of three remaining ones. 

 
Table 1: best results when considering six weeks forecasting horizon. All 

of them run with GBRT algorithm. 

 
Table 2: best results when considering three days forecasting horizon. All 

of them run with GBRT algorithm. 

4.2 Target normalization 
We then compared trained GBRT models against new ones where same 
transformations as applied to features were applied to target values. Our 
assumption was that by transforming the target, which had a lognormal 
distribution, we should get a better spread of predictions and better results. 
Most best results for six-weeks horizon were found at GBRT-6m-wTT-4Y 
and GBRT-9m-wTT-4Y models except for 10+ and 50+ datasets. When 
comparing models with and without target transform, most best results at 
models without target transform resulted in second best results if considered 
globally. 
On the other hand, for three-day forecasting horizons, applying 
transformations to the target improved results most cases, but still half of 
best predictions could be found among models that do not require target 
transformation. In this context, GBRT-12m-wTT-4Y displayed best global 
performance for half of datasets considered. 
 

 
Table 3: best results when considering six weeks forecasting horizon. All 

of them run with GBRT algorithm. 

 
Table 4: best results when considering three days forecasting horizon. All 

of them run with GBRT algorithm. 

4.3 Records history contribution 
Since forecasting models are time sensitive, we explored if recent history is 
more relevant in such a way that older records may deteriorate forecasting 
results. We pruned the dataset removing all records older than two or three 
years in train set and compared models trained on them with those obtained 
from training on full history. 
When analyzing a six-weeks horizon, we found out that pruning history 
leads to better results achieving almost all first- and second-best results 
globally. Best results were achieved by models with three years of history 
with best performance for GBRT-9m-wTT-3Y. 
For a three-days horizon, we observed that GBRT models with different 
feature sets over pruned datasets performed worse than existing ones. 
Overall, we observe GBRT algorithm achieved best results with target 
transforms enhancing results on half datasets and that 12m was the most 
frequent feature set among competitive models. 
 

 
Table 5: best results when considering six-weeks forecasting horizon. All 

of them run with GBRT algorithm. 

 
Table 6: best results when considering three-days forecasting horizon. All 

of them run with GBRT algorithm. 
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4.4 Comparison against models from literature 
In literature most cited models were naïve, ARIMA, MLR and SVR, being 
SVR the one with state of art results. We trained MLR and SVR under same 
conditions as our best models, to understand how compare against them. 
For a six-weeks horizon, we observed that GBRT outperformed them in all 
cases. Results are consistent with descriptions from literature, where 
ARIMA estimates are better than the naïve forecast, but surpassed by the 
SVR model in all cases. SVR and MLR consistently displayed best results 
with features computed over last three months regardless of dataset pruning, 
but MLR shows a rapid prediction quality degradation on the rest of feature 
sets. Despite this, best results were delivered by MLR over SVR. 
Results for three-days horizon were similar. MLR had worst results when 
using 9m or 12m feature sets, followed by naïve forecasting. MLR and SVR 
displayed best results for 3m and 6m feature sets with MLR beating SVR 
with a 3m feature set. All GBRT models outperformed MLR and SVR, 
achieving best performance when features and target are transformed but 
without dataset pruning. 
 

 
Table 7: best models against naïve, ARIMA, MLR and SVR, considering 

six-weeks horizon. 

 
Table 8: best models against naïve, ARIMA, MLR and SVR, considering 

three-days horizon. 

4.5 Features contribution 
We also explored how much do specific features contribute to predictions, 
comparing results obtained for best model to those that only take into 
account historical values of demand records, annual forecasts or open sales. 
Best results were obtained with demand history features with an average 
error of at most 8% greater than from models considering all features, with 
little variation among those trained for either time horizon. Models 
considering annual sales forecast (Model AF) had an error of 1.85 times the 
error of the best model on average, while models based only on future sales 
(Model FS) had greater error averaging 2.18 times that of the best models. 
We conclude the most important feature is demand history, while the rest 
of the features contribute to enhance results. 
 

 
Table 9: comparison of results with feature sub-sets considering six-

weeks horizon. 

 
Table 10: comparison of results with feature sub-sets considering three-

days horizon. 

4.6 R2 FOR BEST MODELS 
After performing the experiments, we computed R2 scores to understand 
how much variance in the forecasted demand is explained by variables taken 
into account when performing the prediction. When comparing scores 
obtained for our best models against those from predictions made by 
logisticians, we found that our models achieve better scores here too by an 
average of three to six centesimal points. 

5 CONCLUSION AND FUTURE WORK 
Best models result in an improvement of 10% to 20% over logisticians 
predictions for both prediction horizons. There is a smaller gap on the three-
day prediction horizon, where both predictions are closer to each other. In 
general, we observe an improvement in results when considering a higher 
demand history points density. This is also consistent with results regarding 
features relative importance. 
GBRT consistently displays best performance for both forecasting horizons. 
Regarding feature sets, we observe most models perform best with features 
computed in a twelve- or nine-months window. When looking for models 
for six week forecasting horizon, pruning the dataset to a total of three years 
was optimal, but degraded results for three days horizon. 
In the future we would like to enrich existing datasets with time series 
embeddings as well as products metadata. Time series embeddings should 
help identify similar timeseries and help make better predictions on 
products with similar behavior. Products metadata may be used in a similar 
way, since similar products should have similar demands. Product similarity 
can be considered from metadata point of view as well as from purchase 
closeness: items bought together will have similar demands, even though 
may have different characteristics. 
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