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Figure 1: Sample of the time series and projections of the embedding - This plot gives us a geometrical representation of the
theory involved in section 3 and shows the reconstructed state space of the given time series. This can be obtained by using
Takens’ embedding to reconstruct the time series 𝑦, given in figure a), as the markovian system 𝑌𝐾 with 𝐾 time delays and
then use Principal Component Analysis in order to perform the change of basis of the data. The obtained projections b), c)
and d) attain the dynamics of the system, which gives us the possibility to predict the time series with higher efficiency.

ABSTRACT
In this paper, we present the exploitation of a method to extract

information frommicroscopic samples of time series data in order

to provide a representation of optimized stability to a chaotic sys-

tem [1]. The main goal of this approach is to predict the dynamics

of a time series and therefore develop optimized forecasting al-

gorithms. First, we study how to increase the predictability of

a system and second, we develop a Deep Learning Algorithm,

namely an LSTM, that can recognize patterns in sequential data

and accurately predict the future behaviour of a time series.
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1 INTRODUCTION
Given its intrinsic nature, mathematics concerns with the con-

struction of formal statements and proofs relating the different

concepts within it. Its methods are used in countless ways and

effectively model the shape of our world. But how is it possible to

shape the unknown? Motivated by this question and the upmost

need for finding ways of optimizing water resources for future

generations, there has been a great development on the study of

dynamical systems based on, for example, (Shannon) entropy [9]

and phase space reconstruction [4]. In this paper, we provide an

approach to water resource management using Deep Learning

and Chaos Theory, by studying the dynamics of a time series

using the 2 main ideas cited before. This study was developed
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for the H2020 NAIADES Project [2] with data collected from the

Municipality of Alicante (Spain). We will present this study for

the Autobus Dataset, related to the Bus Station Areas in Alicante.

2 STATIONARY AND CHAOTIC NATURE
2.1 Dickey-Fuller Test for Stationarity
In order to proceed with the theory involved in the method,

it is necessary to understand the behaviour of the time series

and its sensitivity to initial conditions. For studying time series’

stationarity, one can use the AugmentedDickey-Fuller test, which

is a type of statistical test called a unit root test, where generally

the null hypothesis is that the time series can be represented by

a unit root, which means that for 𝑦 = {𝑦𝑡 }𝑇𝑡=1, the information

at point 𝑦𝑡−1 does not provide us the ability to predict 𝑦𝑡 . In

our case, we obtained that the p-value of the test was 0, so the

null hypothesis was rejected and the time series has no unit

root. Therefore, it is stationary and the time delays will provide

important information for predicting the dynamics of the time

series.

2.2 Lyapunov exponents for understanding
chaotic nature

The Lyapunov Exponent is a quantifier for the sensitivity of the

time series on initial conditions and therefore for its chaotic na-

ture. The main idea is to select an array of nearest neighbors, i.e,

points at minimum distance, and calculate its trajectories in time.

By doing so, we can then obtain an average of this divergence

exponent which gives us the Lyapunov Exponent. Since the sys-

tem is bounded, the divergence is also bounded and will reach

a plateau after a certain number of timesteps. In our case, the

Lyapunov Exponent, given as the initial slope, is ≈ 518 and the

initial growth is exponential, as can be seen in figure 5. Therefore,

the time series is of a chaotic nature.
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3 MAXIMUM PREDICTABILITY
Given the high variability of any chaotic system, it is hard to

capture the whole set of variables that model the state space.

This is characteristic of a non-Markovian system which is highly

unpredictable. How do we surpass this issue?

Takens’ Embedding Theorem [8] tells us that, under certain con-

ditions, it is possible to use past data to reconstruct a Markovian

system, thus giving us the possibility to model the initial time

series with higher efficiency. We start by considering a set of

ODEs 𝑥 = ( ¤𝑥1, ¤𝑥2, . . . , ¤𝑥𝐷 ) and the 𝑑-dimensional time series

𝑦 (𝑡) of duration 𝑇 which is a set of incomplete measurements

of 𝑥 given by a measure 𝑀 , i.e., 𝑦 = 𝑀 (𝑥). Then, in order to

calculate the number of 𝐾 time delays to feed the LSTM with,

the 𝑑-dimensional measurements are lifted into the state space

𝑌𝐾 ∈ R𝑑×𝐾 consisting of the previously referred 𝐾 time delays

[3]. It is possible to quantify the chaotic measure of the system

𝑌𝐾 by calculating the entropy resulting from clustering. This

can be done by partitioning the 𝑑 × 𝐾-dimensional space into

𝑁 Voronoi cells using 𝐾-Means clustering. Having partitioned

the state space 𝑌𝐾 , the reconstructed dynamics are encoded as a

row-stochastic transition probability matrix 𝑃 = [𝑃𝑖 𝑗 ]𝑖, 𝑗 which
relates increments on the state-space density 𝑝 in the following

way

𝑝𝑖 (𝑡 + 𝛿𝑡) =
∑︁
𝑗

𝑃 𝑗𝑖𝑝 𝑗 (𝑡). (1)

The entropy rate of the initial time series 𝑦 (𝑡) is then approxi-

mated by estimating the entropy rate (Figure 3) of the associated

Markov chain on the different time delays 𝐾 using Kolmogorov’s

definition

ℎ𝑝𝑁 (𝐾) = −
∑︁
𝑖, 𝑗

𝜋𝑖𝑃𝑖 𝑗 log 𝑃𝑖 𝑗 , (2)

where 𝜋 is the estimated stationary distribution of the Markov

chain 𝑃 . This approximation gives an estimate for the conditional

entropies (Figure 6), i.e., for a discrete state with delay vectors

®𝑦𝐾 = {®𝑦𝑖 , . . . , ®𝑦𝑖+𝐾−1}, the entropy of the Markov chain provides

an estimate for the conditional entropy,

ℎ𝑝𝑁 (𝐾) ≈ ⟨− log[𝑝𝑁 (𝑦𝑖+𝐾 |𝑦𝑖 , . . . , 𝑦𝑖+𝐾−1)]⟩
= 𝐻𝐾+1 (𝑁 ) − 𝐻𝐾 (𝑁 )
= ℎ𝐾 (𝑁 ),

(3)

where 𝐻𝐾 is the Shannon Entropy of the sequence obtained by

partitioning the ®𝑦 space into 𝑁 partitions.

4 MODEL ARCHITECTURE
4.1 LSTM
Long Short Term Memory (LSTM) Networks are a special type

of Recurrent Neural Networks (RNN) which rely on gated cells

that control the flow of information by choosing what elements

of the sequence are passed on to the next module. This idea was

introduced in order to surpass the vanishing gradient problem

in conventional RNNs [7]. At each time 𝑡 , consider 𝑓𝑡 as the

forget gate, 𝑖𝑡 as the input gate and 𝑜𝑡 as the output gate, which

are functions that depend on the output of the previous LSTM

module, given by ℎ𝑡−1 and on the input of the current timestep,

given by 𝑥𝑡 . Then, the next figure shows a representation of how

a single LSTM cell performs its computations. The computations

Figure 2: An LSTM performs the following ordered compu-
tations: The first step is to forget their irrelevant history.
Then, LSTMs perform computation to decide on relevant
parts of new information and based on the previous two
steps, they selectively update the internal state. Finally, an
output is generated.

shown in this figure can be mathematically represented as

𝑓𝑡 (𝑥𝑡 , ℎ𝑡−1) = 𝜎 (𝑤𝑇𝑓 ,𝑥𝑥𝑡 +𝑤 𝑓 ,ℎℎ𝑡−1 + 𝑏 𝑓 )

𝑖𝑡 (𝑥𝑡 , ℎ𝑡−1) = 𝜎 (𝑤𝑇𝑖,𝑥𝑥𝑡 +𝑤𝑖,ℎℎ𝑡−1 + 𝑏𝑖 )

𝑜𝑡 (𝑥𝑡 , ℎ𝑡−1) = 𝜎 (𝑤𝑇𝑜,𝑥𝑥𝑡 +𝑤𝑜,ℎℎ𝑡−1 + 𝑏𝑜 ),

(4)

where 𝑤 𝑓 ,𝑥 ,𝑤𝑖,𝑥 ,𝑤𝑜,𝑥 ∈ R𝑑 are weight parameters and 𝜎 is an

activation function.

4.2 Our approach
The core idea is to take a list of 𝑘 training sets 𝑄0, 𝑄1, . . . , 𝑄𝑘−1
and testing sets 𝑃0, 𝑃1, . . . , 𝑃𝑘−1 in order to generalize the model

and do the best estimation for the time series. This is based

on translating the testing sets’ partitions along the time series,

where the first partition 𝑃0 = {𝑝0
0
, . . . , 𝑝𝑛

0
} is taken from the

zeroth point of the time series data and the last partition 𝑃𝑘−1 =
{𝑝0
𝑘−1, . . . , 𝑝

𝑛
𝑘−1} until the last point of the time series data and

|𝑃𝑖 | =
|𝑦 |
𝑘
,∀𝑖 ∈ {0, . . . , 𝑘 − 1} (5)

where |𝑦 | stands for the cardinality of the time series 𝑦. This

procedure yields 𝑘 models which will use each of the training

sets to make predictions on the respective test sets. Given the

erratic nature of the data, which was taken in 15 and 30 minutes

samples, a resampling to 30 minute delays had to be done on the

15 minutes delay data points and a masking was added to the time

series in order to neglect NaN values that could be created from

resampling. Therefore, a masking layer was added and the model

is composed by 3 other layers L𝑛1 , L𝑛2 and L𝑛3 , where 𝑛1 =

𝑛3 = 1 (we have a univariate timeseries) and𝑛2 = 64, since it gave

the best results in cross validation. A dropout regularization of

0.1 was added for better approximation of training and validation

errors and the batch size was set to 128. The mean squared error

for the predictions on the training set is ≈ 0.00115 and for the

testing set is≈ 0.00236. One can address the capacity of the model

whose predictive results are shown in figure 4.

5 FORECASTING
5.1 Forecasting Methods
Consider a time series 𝑇 = {𝑡1, . . . , 𝑡𝑁 }. The forecasting process
can be done in 3 ways:

(1) iterated forecasting
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(2) direct forecasting

(3) multi-neural network forecasting

Process number (1) is based on "many-to-one" forecast for which

𝑡𝑛+1 ≈ F (𝑡𝑖 , . . . , 𝑡𝑖+𝑛−1), 𝑖 ∈ {1, . . . , 𝑁 − 𝑛}. (6)

Then, a 𝐾-step forecast can be iteratively obtained by

𝑡𝑁+𝑗 := F (𝑡𝑁+𝑗−𝑛+1, . . . , 𝑡𝑁+𝑗−2, 𝑡𝑁+𝑗−1), 𝑗 ∈ 1, . . . , 𝐾 . (7)

Process number (2) can be characterized by training a "many-to-

many" function F for which

(𝑡𝑖+𝑛, . . . , 𝑡𝑖+𝑛+𝐾−1) ≈ F (𝑡𝑖 , . . . , 𝑡𝑖+𝑛−1), (8)

where 𝑖 ∈ {1, . . . , 𝑁 −𝑛 −𝐾 + 1}.We can obtain a 𝐾-step forecast

by

(𝑡𝑁+1, . . . , 𝑡𝑁+𝐾 ) := F (𝑡𝑁−𝑛+1, . . . , 𝑡𝑁 ). (9)

Finally, process (3) is defined by 𝑘 "many-to-one" functions

F1, . . . , F𝑘 which hold the following relationship

𝑡𝑖+𝑛 ≈ F1 (𝑡𝑖 , . . . , 𝑡𝑖+𝑛−1)
.
.
.

𝑡𝑖+𝑛+𝐾−1 ≈ F𝑘 (𝑡𝑖 , . . . , 𝑡𝑖+𝑛−1),

(10)

where 𝑖 ranges from 1 to 𝑁 − 𝑛 − 𝐾 + 1. Process (1) does not
require 𝑘 a propri while both process (2) and (3) are dependent
on the choice of 𝑘 .

5.2 Our Approach
We chose to do a Direct Forecasting for the next 7 days by taking

the last test set partition 𝑃𝑘−1 and did a prediction on this test

set. Although forecasting seems pretty motivating, by choosing

a partition that attains more characteristics of the time series,

one can achieve even better results. The achieved forecast can be

seen on Figure 8 and compared with a 7 days sample on Figure 7.

6 RESEARCH METHODS
6.1 Time Series Reconstruction
Consider the time series 𝑦 with duration 𝑇 as given in section

2. The idea is to add 𝐾 time delays to 𝑦 in order to obtain a

(𝑡 − 𝐾) × 𝐾𝑑 space 𝑌𝐾 ∈ R𝑑×𝐾 and further partition 𝑌𝐾 using

𝑘-means Clustering into 𝑁 Voronoi Cells.

6.2 Entropy Calculation
Consider the𝑁 Voronoi Cells given as the number of partitions of

𝑌𝐾 and consider the joint probability 𝑝 (𝑐𝑖1 , . . . , 𝑐𝑖𝑙 ), {𝑖1, . . . , 𝑖𝑙 } ∈
{0, . . . , 𝑁 − 1}. Then, the Shannon Entropy [6] is given by

𝐻𝑙 = −
∑︁

𝑝 (𝑐𝑖1 , . . . , 𝑐𝑖𝑙 ) log𝑝 (𝑐𝑖1 , . . . , 𝑐𝑖𝑙 ) (11)

and the conditional probabilites are given by

𝑝 (𝑐𝑖𝑙+1 |𝑐𝑖1 , . . . , 𝑐𝑖𝑙 ), (12)

where 𝑐𝑖𝑙+1 is the next Voronoi Cell after 𝑐𝑖𝑙 . We can calculate the

entropy rate growth by considering the conditional probabilities

of the system given the previous 𝑙 cells, when visiting the (𝑙+1)-th
cell, via

ℎ𝑙 = ⟨− log[𝑝 (𝑐𝑖𝑙+1 |𝑐𝑖1 , . . . , 𝑐𝑖𝑙 )]⟩ = 𝐻𝑙+1 − 𝐻𝑙 (13)

Taking the supremum limit over all possible partitions 𝑃 of 𝑌𝐾 ,

we obtain the Kolmogorov-Sinai invariant of the system,

ℎ𝐾𝑆 = sup

𝑃

lim

𝑙→∞
ℎ𝑙 (𝑃) . (14)

6.3 Data and Code Git Repository
The complete work can be found in:

https://github.com/johncoost/JoaoModelsForAlicante.

7 PLOT OF RESULTS

Figure 3: Entropy Rate ℎ - The entropy rate ℎ is given as
the function of the number of partitions 𝑁 for increasing
number of delays 𝐾 (given by the different colors in a de-
scendent mode). It is possible to observe that the entropy
rate is a non-decreasing function on the number of par-
titions 𝑁 . The idea is to choose the value of 𝑁 for which
the entropy is maximum so that we have the maximum
possible information about the system’s dynamics.

Figure 4: Prediction on the last test set - This shows a sam-
ple of the last test set and its prediction. We can observe
the effectiveness of the LSTM in modelling the given time
series by having a deep understanding of its inherent dy-
namics.

Figure 5: In this figure, we can understand the initial expo-
nential growth on distance between points (given in blue),
relative to a curve of slope 1 (given in orange).

https://github.com/johncoost/JoaoModelsForAlicante
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Figure 6: Conditional Entropies - In this plot we can see
the entropy rate for number of partitions 𝑁 = 200 which
maximizes this entropy. This function reaches a plateau
at ≈ 24 timesteps, which gives us an idea about which is
the optimal 𝐾 to choose. Given that we have 30 minutes
timesteps, this plot shows that the optimized time delay is
of 12h which corresponds to the day and night cycles

Figure 7: 7 Days Sample

Figure 8: Prediction for 7 days ahead - Actual forecast using
336 timesteps that gives a 7 day future forecast sample using
the LSTM model and direct forecasting. It is possible to
observe that, as in figure 6, the values vary between ≈ 2000

to ≈ 14000 flow units and the essential dynamics of the
time series were understood by the LSTM.

8 CONCLUSION
Having developed all the necessary machinery for constructing

a coherent forecasting engine, we come to the conclusion that

although the cardinality of the time series data was relatively

small, the obtained results are promising and the model will

certainly show satisfying results when applied in real time.

For the future, we want to continue developing the project by

building other algorithms, such as Transformer neural network,

that would provide even better results. Another idea is to use

weather data and build a multivariate LSTM that optimally gives

better results than the univariate one.
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