
Modeling stochastic processes by simultaneous
optimization of latent representation and target variable

Jakob Jelenčič
Artificial Intelligence

Laboratory
Jozef Stefan International

Postgraduate School
Jozef Stefan Institute
Ljubljana, Slovenia

jakob.jelencic@ijs.si

Dunja Mladenić
Artificial Intelligence

Laboratory
Jozef Stefan International

Postgraduate School
Jozef Stefan Institute
Ljubljana, Slovenia

dunja.mladenic@ijs.si

ABSTRACT
This paper proposes a novel method for modeling stochastic
processes, which are known to be notoriously hard to predict
accurately. State of the art methods quickly overfit and
create big differences between train and test datasets. We
present a method based on simultaneous optimization of la-
tent representation and the target variable that is capable of
dealing with stochastic processes and to some extent reduces
the overfitting. We evaluate the method on equities and
cryptocurrency datasets, specifically chosen for their chaotic
and unpredictable nature. We show that with our method
we significantly reduce overfitting and increase performance,
compared to several commonly used machine learning algo-
rithms: Random forest, General linear model and LSTM
deep learning model.

1. INTRODUCTION
Time series prediction has always been an interesting chal-
lenge. Deep learning structures that are designed for time
series are prone to overfitting. Especially if the underlying
time series is stochastic by nature. Every young researcher’s
first attempt when dealing with time series, was trying to
learn a time series model that will predict future prices;
whether in equities, commodities, forex or cryptocurrencies.
Unfortunately it is not that simple. One can easily build
a near perfect model on the train dataset just to find it is
completely useless on the test dataset.

We propose a novel method that is capable of effectively
combatting the overfitting, especially this proves to be a
difficult task when one is dealing with a problem directly
applicable in practical situations. The main idea is to add
noise from the same distribution as the training data and
then at the same time optimize the target variable and the
latent representation with the help of the autoencoder. The

longer the training goes, the lower is the amplitude of noise
and the less focus is on the optimization of the representation.

We have evaluated the proposed method on an equities
dataset and a cryptocurrency dataset, in both cases achieving
extraordinary results on the test dataset. We have also shown
the importance of noise distribution and how the de-noising
fails if the distributions of the data and noise do not align.

The rest of the paper is organised as follows. Section 2
describes the data we were using. In section 3 we introduce
the proposed method. In section 4 we present empirical
results. In section 5 we conclude by pointing out the main
results and defining guidance for the future work.

2. DATA
The proposed method works well for stochastic processes.
Equities are supposed to follow some form of stochastic pro-
cess [9], either the Black-Scholes one or some more complex
process with unknown formulation. In order to evaluate our
method, we have collected daily data of more than 5000
equities listed on NASDAQ from 2007 on. The data is freely
available on the Yahoo Finance website [2]. We transformed
the data using technical analysis [10] and for test set took
every instance that happened after 2019. We calculated mov-
ing average using 10 days closing price then tried to predict
the direction of the change of this trendline.

The equity data turned out to be a little bit timid, not
chaotic enough to demonstrate the full ability of the pro-
posed method. This is why we also collected minute data of
cryptocurrencies Ethereum and Bitcoin and used the method
on them as well. Data is available on the crypto exchange
Kraken [1]. We used the same transformation as for the
equities, but with a bit quicker trend. This time the target
variable was change in the trendline in the next 6 hours. For
the test set we took every instance that has time stamp after
December 2020.

The reader should note that the end goal is not to accurately
predict future equity price, since that is next to impossible.
As soon there is a pattern, someone will profit from it and
then the pattern will change. By predicting the future trend
line, one can obtain a significant confidence interval and



estimates of where the price could be, and then design for
example a derivative strategy that searches for favourable
risk versus rewards trades.

3. PROPOSED METHOD
We propose the method designed for prediction of stochastic
processes. The method achieves significant results improving
the metrics and loss functions on unseen data, where standard
deep learning is prone to over-fit. The main advantage is
reducing the gap between training data and testing data,
sometimes to a degree where one sacrifices a little bit on the
train side to actually have the model outperforming it on
test data. This is very important in time series, where a
prediction model is usually just one part of a bigger strategy
and where the train over-fit is the biggest issue. For example,
designing a trading strategy on over-fitted predictions, that
kind of mistake can lead to huge capital losses.

The proposed method can be broken down into 3 important
parts: normalization, noise addition and additional opti-
mization of latent representation. Each part can be easily
integrated into an already existing pipeline.

3.1 Empirical normalization
Normalization plays an important role in deep learning mod-
els. It was shown that normalization significantly speeds up
the gradient descent, almost independently of where normal-
ization takes place. It can be weight normalization [11] during
the actual optimization, or it can be the batch normalization
[8], or just normalization of the whole input data [7]. In
the proposed method it is important that the 3 dimensional
input data comes from the same distribution as the gener-
ated noise. Since it is fairly straightforward to sample data
from a 3 dimensional normal distribution, we normalize input
data using an empirical cumulative distribution function [12]
and empirical copula [4] [5]. We align all central moments
of the unknown distribution to the ones from centered and
standardised normal distribution. The normalization takes
place before the data is reshaped to 3 dimensional tensor.

3.2 Noise addition
Introduction of the noise is not new in unsupervised learning
and it was shown that it has a positive effect [14]. Adding
noise to input data and then forcing the model to learn
how to ignore it has a lot of success in generative adversar-
ial networks [3], where convergence can be very tricky to
achieve. We transformed that idea and embedded it into su-
pervised learning procedure. The noise addition is described
in Algorithm 1.

In Algorithm 1 we will use the following abbreviations.

• X = [bs, ts, np] stands for the input tensor with 3 di-
mensions; batch size, time steps and number of features
used for predictions.

• α, β are parameters that control how fast noise will
decrease during the training procedure. They should
be between 0 and 1, where lower value correspond to a
faster decrease in the amplitude of the added noise.

• mvn stands for function sampling from a two dimen-
sional correlated Gaussian distribution, where Σ is the
covariance. matmul stands for matrix multiplication.

Algorithm 1 Noise definition

1: Inputs: X, α, β, epoch
2: Y = [ts, ts, np] . Array for holding Cholesky

decompositions of time correlation matrices.
3: for t ∈ {1, . . . , np} do
4: Σt = cov(X[, , t])
5: Y [, , t] = chol(Σt) . In practice the

closest positive definite matrix of Σt is computed before
the Cholesky decomposition.

6: end for
7: Z = [bs, ts, np] . Array for holding noise samples.
8: for i ∈ {1, . . . , ts} do
9: Σi = cov(X[, i, ])

10: Z[, i, ] = mvn(bs,Σi)
11: end for
12: for j ∈ {1, . . . , np} do
13: Z[, , j] = matmul(Z[, , j], Y [, , j]) . Correcting

initially independent noise samples with respect to time.
14: end for
15: for w ∈ {1, . . . , ts} do
16: Z[, w, ] = Z[, w, ] ∗ ((βts−w · αepoch) · sd) . Decrease

the noise during the training procedure.
17: end for
18: R = X + Z
19: Return R.

3.3 Optimization of latent representation
The most common issue with deep learning optimization is
falling into a local optimum and being unable to move past
it [13]. We introduce autoencoder part into the optimization
procedure in order to force the model to shift from going
directly to local optimum to learning the latent representation
first. We expect that this combined with the addition of
noise, will force the model first to learn how to ignore the
noise that we added and the noise that is already in the data
by nature of the stochastic process [15]. We optimized the
model using the Adam optimizer [6]. The loss function used
in optimization is defined like:

L = LY +Wae · decayepoch · Lae,

where LY stands for the supervised loss function which will
depend on the problem while Lae stands for the loss between
encoded output and input data. Decay weight is decreasing
the longer the training goes on.

4. RESULTS
We have divided the results section into 2 parts: unsupervised
and supervised. In the first we demonstrate why the noise
distribution is important. For the unsupervised part, due to
hardware constraints, we have only used the cryptocurrency
dataset since we deemed it more demanding than the equity
one. In the second, we demonstrate how the our method
increases test metric on both datasets.



4.1 Unsupervised learning results
In order to test the efficiency of distributed noise versus just
random noise, we created 3 models. The baseline model was
a deep learning model with 3 stacked LSTM layers, encoded
layer, then again 3 stacked LSTM for decoded output. We
have used Adam as optimizer. As loss function we used
mean-squared error. We have stopped the learning after
there was no improvement for 25 epochs on the validation set.
The validation set was randomly taken out of the train set.
Parameters α and β were both set to 0.99 and sd was initially
set to 1.25. The noise decreases with learning procedure.
Interestingly keeping noise constant did not achieve any
results.

Figure 1: Test loss of autoencoder model with random noise
(green) versus no noise (blue).

Initially we have tested baseline model versus de-noising
model but with uncorrelated noise. In the Figure 1 is plotted
the de-noising test loss function in green colour and the
baseline test loss function in blue. Training was stopped
relatively early compared to Figure 2 and it is also obvious
that de-noising test loss is even worse than that of the classic
autoencoder.

In the second example we switched from uncorrelated noise
to the noise with same distribution as input data. As is
apparent on Figure 2, where again we have de-noising test
loss plotted with green and classic test loss with blue, the de-
noising autoencoder achieved lower test loss than the classic
one.

Figure 2: Test loss of autoencoder model with correlated noise
(green) versus no noise (blue).

What we expected is that then the train and validation losses
will be worse than with the classic autoencoder. Surprisingly,
that was not the case. With the de-noising autoencoder
using noise with the same distribution as the input data,
both train and validation losses were better than with classic

one. This result is definitely worth further investigation and
experimentation.

4.2 Supervised learning results
In the previous section we have shown that the distribution
of the noise matters. In this section we will show that
noise combined with optimization of latent representation
significantly improves metrics on unseen data. Similarly as
before, α and β were both set to 0.99 and sd was initially set
to 1.25. From our experience this setting achieves the best
results, but further exploration needs to be done. Wae was
initially set to 5 and decay to 0.95.

Since we now operate in a supervised environment, we can
compare our models to the majority class. But to really
demonstrate the effectiveness of the method, we chose to
compare the following models:

• Majority class, which serves as a sanity check.

• Random Forest with 500 trees.

• Generalized linear model.

• Deep learning model with 3 stacked LSTM layers.

• Deep learning model with 3 stacked LSTM layers and
optimization of latent representation.

• Deep learning model with 3 stacked LSTM layers and
correlated noise addition.

• Finally, deep learning model with 3 stacked LSTM
layers and correlated noise addition and optimization
of latent representation.

All 4 of the deep learning models are identical, all are opti-
mized with Adam and categorical cross entropy was used as a
loss function for the supervised part and mean squared error
for the autoencoder part. Initially we have only tested the
models on equities data, but it turned out that the equities
were not chaotic enough. By that we mean that especially
with deep learning models the difference between train and
test loss was not so big that it would be problematic. From
previous work experience we know that overfit is a big issue
in cryptocurrency dataset, so then we decided to test that
dataset in a supervised setting as well. All models were
trained three times on each dataset and the results in Table
1 and Table 2 are the averages of the 3 runs.

In Table 1 we show the results from the equity dataset. Our
method managed to improve test accuracy (from 0.673 to
0.682) without decreasing train accuracy (0.681). Maintain-
ing test accuracy and keeping it comparable to test one is
important if one needs to build additional strategy upon
predictions. Just noise addition slightly improved the results
(from 0.673 to 0.675), while just the optimization of the latent
distribution does not improve anything.



Table 1: Supervised results on equity dataset.
Method Train Accuracy Test Accuracy
Majority 0.513 0.537

Random Forest 0.649 0.655
GLM 0.664 0.655
LSTM 0.681 0.673

latent LSTM 0.633 0.673
noise LSTM 0.681 0.675

latent noise LSTM 0.681 0.682

In Table 2 we show results from the cryptocurrency dataset.
Similar as on the equity dataset, our method behaves as
intended on the cryptocurrency dataset as well. We can see
reduced overfitting that is apparent in the normal LSTM
model. With those results we can conclude that the proof of
concept works, but for additional claims we will need more
testing and deeper parameter analysis.

Table 2: Supervised results on cryptocurrency dataset.
Method Train Accuracy Test Accuracy
Majority 0.512 0.556

Random Forest 0.689 0.692
GLM 0.682 0.695
LSTM 0.754 0.696

latent LSTM 0.736 0.683
noise LSTM 0.697 0.695

latent noise LSTM 0.706 0.714

It is interesting to point out that with the proposed method
the test loss on cryptocurrency dataset was 0.552, while
train loss was 0.592. While 0.552 was the best loss any deep
learning model achieved, that wide difference indicates that
we could improve our model even further by fine tuning the
parameters.

5. CONCLUSIONS AND FUTURE WORK
In this work we have introduced and demonstrated how the
addition of noise and simultaneous optimization of latent
representation and target variable reduce overfitting on time
series data. In the unsupervised case we have shown that the
distribution of the noise matters and the input data must
align to achieve maximum effect from the noise addition.

In the future work we have to estimate the effect of the
newly introduced parameters on method’s convergence. At
the same time we need to explore how the method behaves
when embedded into larger models, transformers for example.
We also need to evaluate the method in datasets that are by
nature stochastic but do not come from the financial domain.
Finally, we need to evaluate our method on a dataset that is
not stochastic.

6. ACKNOWLEDGMENTS
This work was supported by the Slovenian Research Agency.
We also wish to thank prof. dr. Ljupčo Todorovski for his
help, especially with unsupervised results.

7. REFERENCES
[1] Kraken exchange. https://www.kraken.com/.

[2] Yahoo Finance. https://finance.yahoo.com/.

[3] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran,
B. Sengupta, and A. A. Bharath. Generative
adversarial networks: An overview. IEEE Signal
Processing Magazine, 35(1):53–65, 2018.

[4] P. Jaworski, F. Durante, W. K. Hardle, and T. Rychlik.
Copula theory and its applications, volume 198.
Springer, 2010.

[5] H. Joe. Dependence Modeling with Copulas. CRC Press,
2014.

[6] D. Kingma and J. Ba. Adam: A Method for Stochastic
Optimization. 2014.
https://arxiv.org/abs/1412.6980.

[7] K. Y. Levy. The power of normalization: Faster evasion
of saddle points. arXiv preprint arXiv:1611.04831,
2016.

[8] M. Liu, W. Wu, Z. Gu, Z. Yu, F. Qi, and Y. Li. Deep
learning based on batch normalization for p300 signal
detection. Neurocomputing, 275:288–297, 2018.

[9] R. C. Merton. Option pricing when underlying stock
returns are discontinuous. Journal of financial
economics, 3(1-2):125–144, 1976.

[10] J. J. Murphy. Technical Analysis of the Financial
Markets: A Comprehensive Guide to Trading Methods
and Applications. New York Institute of Finance Series.
New York Institute of Finance, 1999.

[11] T. Salimans and D. P. Kingma. Weight normalization:
A simple reparameterization to accelerate training of
deep neural networks. Advances in neural information
processing systems, 29:901–909, 2016.

[12] B. W. Turnbull. The empirical distribution function
with arbitrarily grouped, censored and truncated data.
Journal of the Royal Statistical Society: Series B
(Methodological), 38(3):290–295, 1976.

[13] R. Vidal, J. Bruna, R. Giryes, and S. Soatto.
Mathematics of deep learning. arXiv preprint
arXiv:1712.04741, 2017.

[14] P. Vincent, H. Larochelle, Y. Bengio, and P.-A.
Manzagol. Extracting and composing robust features
with denoising autoencoders. In Proceedings of the 25th
international conference on Machine learning, pages
1096–1103, 2008.

[15] N. Wax. Selected papers on noise and stochastic
processes. Courier Dover Publications, 1954.

https://www.kraken.com/
https://finance.yahoo.com/
https://arxiv.org/abs/1412.6980

	Introduction
	Data
	Proposed method
	Empirical normalization
	Noise addition
	Optimization of latent representation

	Results
	Unsupervised learning results
	Supervised learning results

	Conclusions and future work
	Acknowledgments
	References

