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ABSTRACT

Since the start of the COVID-19 pandemic, much research has been
published highlighting how artificial intelligence models can be
used to diagnose a COVID-19 infection based on medical images.
Given the scarcity of published images, heterogeneous sources, for-
mats, and labels, generative models can be a promising solution
for data augmentation. We propose performing data augmentation
on the embeddings space, saving computation power and stor-
age. Moreover, we compare different class imbalance mitigation
strategies and machine learning models. We find CTGAN data aug-
mentation shows promising results. The best overall performance
was obtained with a GBM model trained with focal loss.
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1 INTRODUCTION

In December 2019, an outbreak of the coronavirus SARS-CoV-2
infection (a.k.a COVID-19) began in Wuhan, China. The disease
rapidly spread across the world, and on January 30 2020, the
World Health Organization (WHO) declared a global health emer-
gency. The most common COVID-19 symptoms are dry cough,
sore throat, fever, loss of taste or smell, diarrhea, myalgia, and
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dyspnea[5]. In addition, older people, or people with previous med-
ical problems (e.g., diabetes, obesity, or hypertension), are more
likely to develop a severe form of the disease[12, 42], which can
derive into multiple organ failure, acute respiratory distress syn-
drome, fulminant pneumonia, heart failure, arrhythmias, or renal
failure, among others[37, 40].

Expert radiologists have observed that the impact of the COVID-
19 infection on the respiratory system can be discriminated from
other viral pneumonia in computed tomography (CT) scans[7, 39].
Most frequent radiological signs include irregular ground-glass
opacities and consolidations, observed mostly in the peripheral and
basal sites[31]. While such opacities were observed up to a maxi-
mum of seven days before the symptoms onset[25], they progress
rapidly and remain a long time after the symptoms onset[35, 38].
While such opacities can be observed on chest radiography, they
have low sensitivity, which can lead to misleading diagnoses in
early COVID-19 stages, and thus a CT scan is preferred[38].

Scientific studies have shown Artificial Intelligence (Al) is a
promising technology transforming healthcare and medical prac-
tice helping on some clinicians’ tasks (e.g., decision support, or
providing disease diagnosis)[45]. In particular, the field of radiomics
studies how to mine medical imaging data to create models that
support or execute such tasks. Given that distinct patterns can
be observed on chest radiographies and CT scans, clinicians and
researchers sought to use Al for COVID-19 diagnostics[31].

There are multiple challenges associated with radiomics, and
in particular, with the COVID-19 diagnosis use case. Despite the
limitations that can exist regarding privacy concerns[26, 44], many
datasets have been made publicly available. From those datasets,
many are limited to a few cases[35]; were collected from different
sources and image protocols, and thus cannot be merged (e.g., the
gray-levels across images can have different meanings[7]); or were
labeled at different granularity levels (e.g., patient-level, or slice-
level)[2]. Therefore, models developed from these datasets cannot
always be ported to a specific environment. Finally, limitations can
exist regarding data collection, further limiting available data to
develop working models to diagnose the disease.

The main contributions of this research are (i) a comparative
study between four data-augmentation strategies used to deal with
class imbalance, (ii) across eight frequently cited machine learn-
ing algorithms, based on a real-world dataset of chest CT scans
annotated with their COVID-19 diagnosis. We developed the ma-
chine learning models with images provided by the Medical Physics
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Research Group at the University of Ljubljana and made them avail-
able as part of the RIS competition!.

We report the models’ discrimination power in terms of the area
under the receiver operating characteristic curve (AUC ROC). The
AUCROC is a widely adopted classification metric that quantifies
the sensitivity and specificity of the model while is invariant to a
priori class probabilities.

This paper is organized as follows. Section 2 outlines related
scientific works, Section 3 provides an overview of the use case,
and Section 4 details the methodology. Finally, section 5 presents
and discusses the results obtained, while Section 6 concludes and
describes future work.

2 RELATED WORK

The field of radiomics is concerned with extracting high-dimensional
data from medical images, which can be mined to provide diagnoses
and prognoses, assuming the image features reflect an underly-
ing pathophysiology[16, 27, 28]. While the research on the field is
experiencing exponential growth, multiple authors have warned
about common issues affecting the quality and reproducibility of
radiomics research and proposed several criteria that should be met
to mitigate them (e.g., RQS, CLAIM, or TRIPOD)[10, 27, 32]. It has
also been observed that the translation into clinical use has been
slow[13].

Since the start of the COVID-19 pandemic, much research has
been published highlighting how AI models could be used to is-
sue COVID-19 diagnoses based on medical images. While much
research was invested into transfer learning leveraging pre-trained
deep learning models, or the use of deep learning models as feature
extractors[24], some authors also experimented with handcrafted
features[7]. Most common machine learning approaches involved
the use of deep learning (end-to-end models, or pre-trained models
for feature extraction)[14, 23, 34, 36, 43], Support Vector Machine
(SVM)[4, 7, 14, 22, 23, 34, 36, 38, 43], k-Nearest Neighbors (kNN)[14,
22, 23, 38, 43], Random Forest (RF)[22, 23, 36], CART[22, 23, 36],
Niive Bayes[22, 23], and Gradient Boosted Machines (GBM)[6, 22].

Two commonly faced challenges regarding COVID-19 diagnoses
based on medical images are images scarcity and class imbalance.
Given the heterogeneity of the datasets, it is not always possi-
ble to merge them[2, 7, 35]. Thus, some researchers successfully
experimented using generative adversarial networks (GANs) to
generate new images that comply with the existing patterns in
the dataset[1, 34]. GANs provide means to learn deep representa-
tions from labeled data and generate new data samples based on a
competition involving two models: a generator, learns to generate
new images only from its interaction with the discriminator; and
the discriminator, who has access to the real and synthetic data
instances, and tries to tell the difference between them(3, 11]. While
this method was first applied on images[17], new approaches were
developed to adapt it for tabular data[41].

The fact that the classification categories are not approximately
equally represented in a dataset can affect how the machine learn-
ing algorithms learn and their performance on unseen data, where
the distribution can be different from the one observed in training
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data[8]. Due to these reasons, care must be taken to select met-
rics not sensitive to such imbalance. Among common strategies
to deal with class imbalance, we find oversampling data methods,
which aim to increase the number of data instances of the minority
class to balance the dataset. Oversampling methods can add data
instances from existing ones by replicating them (e.g., using a niive
random sampler that draws new samples by randomly sampling
with replacement from the available train samples), or by creating
synthetic data instances (e.g., through SMOTE[9], ADASYN[19],
or GAN5). In addition to data oversampling, the Focal Loss[29]
can be used on specific algorithms. The Focal Loss reshapes the
cross-entropy loss to down-weight well-classified examples while
focusing on the misclassified ones, achieving better discrimination.
Finally, while the techniques mentioned above are useful for clas-
sification, we can reframe the problem as an anomaly detection
problem, attempting to detect which data instances correspond to
the minority class (anomaly).

Through the research we reviewed, we found a paper describing
the use of SMOTE[14], and two papers using GANs[1, 34] for data
augmentation at the image level. We found no paper performing
a more extensive assessment of the class imbalance influence nor
compared class imbalance strategies towards the COVID-19 detec-
tion models’ outcomes. We propose utilizing data augmentation
techniques, generating new embeddings instead of full images. Such
an approach provides similar information in the embedding space
as would be obtained from synthetic images while enabling widely
used techniques for tabular data oversampling. Furthermore, in
GANs, new data instances are cheaper to compute and store than
would be if creating new images.

3 USE CASE

The research reported in this paper is done with images provided by
the Medical Physics Research Group at the University of Ljubljana
and made available as part of the RIS competition. The dataset
was built from computed tomography (CT) scans obtained from
three datasets reported in[18, 25, 33], that correspond to 289 healthy
persons and 66 COVID-19 patients. Healthy persons are determined
with a CT score between zero and five, while COVID-19 patients are
considered those with a CT score equal to or higher than ten[15].
Each CT scan was segmented into twenty slices, resulting in 7.100
images with an axial view of the lungs, and annotated into two
classes: COVID-19 and non-COVID-19. The visual inspection of
CT scans aims to determine if the person was infected with the
COVID-19 disease. Automating this task reduces manual work and
speeds up the diagnosis.

4 METHODOLOGY

We propose using artificial intelligence for an automated COVID-19
diagnosis based on images obtained from CT scan segmentation,
posing it as a binary classification problem. The discrimination
capability of the models is measured with the AUC ROC metric
with a cut threshold of 0.5.

We use the ResNet-18 model[20] for feature extraction, retrieving
the vector produced by the Average Pooling layer. Since the vector
consists of 512 features, we perform feature selection computing
the features’ mutual information and selecting the top K to avoid
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overfitting. To obtain K, we follow the equation K = VN suggested
by[21], where N is the number of data instances in the train set.

To evaluate the models’ performance across different data aug-
mentation strategies, we apply a stratified ten-fold cross-validation.
Data augmentation is performed by introducing additional minority
class data samples on the train folds. We consider five imbalance mit-
igation strategies: NONE (without data augmentation), RANDOM
(naive random sampler), SMOTE, ADASYN, and CTGAN (GAN that
enables the conditional generation of data instances based on a
class label)[41]. No augmentation is performed on the test fold to
ensure measurements are comparable. The performance of the data
augmentation strategies is measured across eight machine learning
algorithms: SVM, kNN, RF, CART, Gaussian Niive Bayes, Multi-
layer Perceptron (MLP), GBM, and Isolation Forest (IF)[30]. Finally,
we compare the performance of the data augmentation scenarios
computing the average AUC ROC across the test folds and assess
if the difference is statistically significant by using the Wilcoxon
signed-rank test, using a p-value of 0.05.

5 RESULTS AND ANALYSIS

When comparing the results across different imbalance mitigation
strategies (see Table 1), we observed that data augmentation leads
to inferior results in most cases. While this outcome was expected
for IF (the minority class is no longer an outlier after data augmen-
tation), we found that only the CART, MLP, and GBM algorithms
achieved better performance with CTGAN data augmentation com-
pared to the original dataset. Moreover, six algorithms achieved
the best results when augmented with CTGAN compared to other
data imbalance strategies (except NONE). We confirmed the AUC
ROC differences between imbalanced datasets strategies were sta-
tistically significant, with a few exceptions: SMOTE vs. ADASYN
for CART, MLP, and GBM; NONE vs. RANDOM for CART; NONE
vs. SMOTE for Niive Bayes; RANDOM vs. SMOTE for SVM and RF;
and RANDOM and SMOTE vs. CIGAN for SVM and IF. From the
results obtained, we consider the CTGAN success can be attributed
to the fact the generative model can learn over time to generate
high-quality data instances based on the discriminator’s feedback
loop, while Niive random sampling reuses existing instances (pro-
viding little new information to the dataset), and the SMOTE and
ADASYN algorithms generate new samples based on heuristics
without learning capabilities.

We observed that GBM models trained with a Focal Loss achieved
the best results in all datasets. Even when no data augmentation is
performed and the RF achieves the best result, the difference is not
statistically significant compared to the GBM model. The overall
best performance was obtained with a GBM model trained over a
dataset with CTGAN data augmentation. While the reasons behind
the performance drop for the kNN, Niive Bayes, RF, and SVM
models remain unclear, further investigation is required to clarify
them. Nevertheless, we consider the CTGAN data augmentation
on the embeddings space approach is promising.

6 CONCLUSION

This research presents a novel approach towards data augmentation
in radiomics by generating new data instances in the embedding
space rather than generating new images. We demonstrate that
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this approach leads to the best forecast outcomes with a GBM
model trained with a Focal Loss on a dataset enriched with new
CTGAN generated instances. Moreover, we compare this approach
to other imbalanced data strategies, finding that Néive random
oversampling, SMOTE, and ADASYN degrade the resulting models’
performance compared to the original dataset. Future work will
focus on further understanding the cases where the CTGAN data
augmentation leads to poor results and provide an integral explain-
ability model for machine learning classifiers that consume image
embeddings.
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Class Imbalance

Mitigation CART IF | kNN | MLP | Naive Bayes RF | SVM | GBM
Strategies
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CTGAN 0,7401 | 0,5340 | 0,8118 | 0,8419 0,6395 | 0,7090 | 0,6896 | 0,8871

Table 1: Average AUC ROC values obtained across the ten cross-validation folds. Best results are bolded, second-best results
are highlighted in italics.
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