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ABSTRACT
Large pretrained language models, based on the transformer

architecture, show excellent results in solving many natural lan-

guage processing tasks. The research is mostly focused on Eng-

lish language; however, many monolingual models for other lan-

guages have recently been trained. We trained first such mono-

lingual model for Slovene, based on the RoBERTa model. We

evaluated the newly trained SloBERTa model on several classi-

fication tasks. The results show an improvement over existing

multilingual and monolingual models and present current state-

of-the-art for Slovene.
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1 INTRODUCTION
Solving natural language processing (NLP) tasks with neural

networks requires presentation of text in a numerical vector

format, called word embeddings. Embeddings assign each word

its own vector in a vector space so that similar words have similar

vectors, and certain relationships between word meanings are

expressed in the vector space as distances and directions. Typical

static word embedding models are word2vec [19], GloVe [24], and

fastText [1]. ELMo [25] embeddings are an example of dynamic,

contextual word embeddings. Unlike static word embeddings,

where a word gets a fixed vector, contextual embeddings ascribe

a different word vector for each occurrence of a word, based on

its context.

State of-the-art text representations are currently based on the

transformer architecture [35]. GPT-2 [27] and BERT [5] models

are among the first and most influential transformer models. Due

to their ability to be successfully adapted to a wide range of

tasks, such models are, somewhat impetuously, called foundation

models [2, 17]. While GPT-2 uses the transformer’s decoder stack

to model the next word based on previous words, BERT uses

the encoder stack to encode word representations of a masked

word, based on the surrounding context before and after the

word. Previous embedding models (e.g., ELMo and fastText) were

used to extract word representations which were then used to

train a model on a specific task. In contrast to that, transformer

models are typically fine-tuned for each individual downstream

task, without extracting word vectors.
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Successful transformer models typically contain more than

100 million parameters. To train, they require considerable com-

putational resources and large training corpora. Luckily, many of

these models are publicly released. Their fine-tuning is much less

computationally demanding and is accessible to users with mod-

est computational resources. In this work, we present the training

of a Slovene transformer-based masked language model, named

SloBERTa, based on a variant of BERT architecture. SloBERTa is

the first such publicly released model, trained exclusively on the

Slovene language corpora.

2 RELATEDWORK
Following the success of the BERT model [5], many transformer-

based language models have been released, e.g., RoBERTa [14],

GPT-3 [3], and T5 [28]. The complexity of these models has

been constantly increasing. The size of newer generations of

the models has made training computationally prohibitive for all

research organizations and is only available to large corporations.

Training also requires huge amounts of training data, which do

not exist for most languages. Thus, most of these large models

have been trained only for a few very well-resourced languages,

chiefly English, or in a massively multilingual fashion.

The BERT model was pre-trained on two tasks simultaneously,

a masked token prediction and next sentence prediction. For the

masked token prediction, 15% of tokens in the training corpus

were randomly masked before training. The training dataset was

augmented by duplicating the training corpus a few times, with

each copy having different randomly selected tokensmasked. The

next sentence prediction task attempts to predict if two given

sentences appear in a natural order.

The RoBERTa [14] model uses the same architecture as BERT,

but drops the next sentence prediction task, as it was shown that it

does not contribute to the model performance. The masked token

prediction task was changed so that the tokens are randomly

masked on the fly, i.e. a different subset of tokens is masked in

each training epoch.

Both BERT and RoBERTa were released in different sizes. Base

models use 12 hidden transformer layers of size 768. Large models

use 24 hidden transformer layers of size 1024. Smaller-sized BERT

models exist using knowledge distillation from pre-trained larger

models [11].

A few massively multilingual models were trained on 100

or more languages simultaneously. Notable released variants

are multilingual BERT (mBERT) [5] and XLM-RoBERTa (XLM-

R) [4]. While multilingual BERT models perform well for the

trained languages, they lag behind the monolingual models [36,

33]. Examples of recently released monolingual BERT models for

various languages are Finnish [36], Swedish [16], Estonian [30],

Latvian [37], etc.

The Slovene language is supported by the aforementioned

massivelymultilingual models and by the trilingual CroSloEngual

BERT model [33], which has been trained on three languages,
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Croatian, Slovene, and English. No monolingual transformer

model for Slovene has been previously released.

3 SLOBERTA
The presented SloBERTa model is closely related to the French

Camembert model [18], which uses the same architecture and

training approach as the RoBERTa base model [14], but uses a

different tokenization model. In this section, we describe the

training datasets, the architecture, and the training procedure of

SloBERTa.

3.1 Datasets
Training a successful transformer languagemodel requires a large

dataset. We combined five large Slovene corpora in our training

dataset. Gigafida 2.0 [13] is a general language corpus, composed

of fiction and non-fiction books, newspapers, school textbooks,

texts from the internet, etc. The Janes corpus [9] is composed of

several subcorpora. Each subcorpus contains texts from a certain

social medium or a group of similar media, including Twitter,

blog posts, forum conversations, comments under articles on

news sites, etc. We used all Janes subcorpora, except Janes-tweet,

since the contents of that subcorpus are encoded and need to be

individually downloaded fromTwitter, which is a lengthy process,

as Twitter limits the access speed. KAS (Corpus of Academic

Slovene) [8] consists of PhD,MSc, MA, Bsc, and BA theses written

in Slovene between 2000 and 2018. SiParl [23] contains minutes

of Slovene national assembly between 1990 and 2018. SlWaC [15]

is a web corpus collected from the .si top-level web domain. All

corpora used are listed in Table 1 along with their sizes.

Table 1: Corpora used in training of SloBERTa with their
sizes in billion of tokens and words. Janes* corpus does
not include Janes-tweet subcorpus.

Corpus Genre Tokens Words

Gigafida 2.0 general language 1.33 1.11

Janes* social media 0.10 0.08

KAS academic 1.70 1.33

siParl 2.0 parliamentary 0.24 0.20

slWaC 2.1 web crawl 0.90 0.75

Total 4.27 3.47

Total after deduplication 4.20 3.41

3.2 Data preprocessing
We deduplicated the corpora, using the Onion tool [26]. We split

the deduplicated corpora into three sets, training (99%), validation

(0.5%), and test (0.5%). Independently of the three splits, we pre-

pared a smaller dataset, one 15th of the size of the whole dataset,

by randomly sampling the sentences.We used this smaller dataset

to train a sentencepiece model
1
, which is used to tokenize and

encode the text into subword byte-pair-encodings (BPE). The

sentencepiece model trained for SloBERTa has a vocabulary con-

taining 32,000 subword tokens.

3.3 Architecture and training
SloBERTa has 12 transformer layers, which is equivalent in size

to BERT-base and RoBERTa-base models. The size of each trans-

former layer is 768. We trained the model for 200,000 steps (about

1
https://github.com/google/sentencepiece

98 epochs) on the Slovene corpora, described in Section 3.1. The

model supports the maximum input sequence length of 512 sub-

word tokens.

SloBERTa was trained as a masked language model, using

fairseq toolkit [22]. 15% of the input tokens were randomly

masked, and the task was to predict the masked tokens. We

used the whole-word masking, meaning that if a word was split

into more subtokens and one of them was masked, all the other

subtokens pertaining to that word were masked as well. Tokens

were masked dynamically, i.e. in each epoch, a different subset

of tokens were randomly selected to be masked.

4 EVALUATION
We evaluated SloBERTa on five tasks: named-entity recognition

(NER), part-of-speech tagging (POS), dependency parsing (DP),

sentiment analysis (SA), and word analogy (WA). We used the

labeled ssj500k corpus [12, 6] for fine-tuning SloBERTa on each

of the NER, POS and DP tasks. For NER, we limited the scope to

three types of named entities (person, location, and organization).

We report the results as a macro-average 𝐹1 score of these three

classes. For POS-tagging, we used UPOS tags, the results are

reported as a micro-average 𝐹1 score. For DP, we report the

results as a labeled attachement score (LAS). The SA classifier

was fine-tuned on a dataset composed of Slovenian tweets [20,

21], labeled as either "positive", "negative", or "neutral". We report

the results as a macro-average 𝐹1 score.

Traditional WA task measures the distance between word vec-

tors in a given analogy (e.g., man : king ≈ woman : queen). For

contextual embeddings such as BERT, the task has to be modified

to make sense. First, word embeddings from transformers are

generally not used on their own, rather the model is fine-tuned.

Four words from an analogy also do not provide enough con-

text for use with transformers. In our modification, we input the

four words of an analogy in a boilerplate sentence "If the word

[word1] corresponds to the word [word2], then the word [word3]

corresponds to the word [word4]." We then masked [word2] and

attempted to predict it using masked token prediction. We used

Slovene part of the multilingual culture-independent word anal-

ogy dataset [32]. We report the results as an average precision@5

(the proportion of the correct [word2] analogy words among the

5 most probable predictions).

We compared the performance of SloBERTa with three other

transformer models supporting Slovene, CroSloEngual BERT

(CSE-BERT) [33], multilingual BERT (mBERT) [5], and XLM-

RoBERTa (XLM-R) [4]. Where sensible, we also included the

results achieved with training a classifier model using Slovene

ELMo [31] and fastText embeddings.

We fine-tuned the transformer models on each task by adding

a classification head on top of the model. The exception is the DP

task, where we used the modified dep2label-bert tool [29, 10]. For

ELMo and fastText, we extracted embeddings from the training

datasets and used them to train token-level and sentence-level

classifiers for each task, except for the DP. The classifiers are

composed of a few LSTM layer neural networks. For the DP

task, we used the modified SuPar tool, based on the deep biaffine

attention [7]. The details of the evaluation process are presented

in [34].

The results are shown in Table 2. The results of ELMo and

fastText, while comparable between each other, are not fully com-

parable with the results of transformer models as the classifier

training approach is different.

https://github.com/google/sentencepiece
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Table 2: Results of Slovene transformer models.

Model NER POS DP SA WA

fastText 0.478 0.527 / 0.435 /

ELMo 0.849 0.966 0.914 0.510 /

mBERT 0.885 0.984 0.681 0.576 0.061

XLM-R 0.912 0.988 0.793 0.604 0.146

CSE-BERT 0.928 0.990 0.854 0.610 0.195

SloBERTa 0.933 0.991 0.844 0.623 0.405

On the NER, POS, SA, andWA tasks, SloBERTa outperforms all

other models/embeddings. For the POS-tagging, the differences

between themodels are small, except for fastText, which performs

much worse. ELMo, surprisingly, outperforms all transformer

models on the DP task. However, it performs worse on the other

tasks. SloBERTa performs worse than CSE-BERT on the DP task,

but beats other multilingual models.

The success of ELMo on the DP task can be partially explained

by the different tools used for training the classifiers. Further

work needs to be done to fully evaluate the difference and success

of ELMo embeddings on this task.

The performance on the SA task is limited by the low inter-

annotator agreement [20]. The reported average of 𝐹1 scores for

positive and negative class is 0.542 for inter-annotator agreement

and 0.726 for self-agreement. Using the same measure (average of

𝐹1 for positive and 𝐹1 for negative class), SloBERTa scores 0.667,

and mBERT scores 0.593.

On the WA task, most models perform poorly. This is expected

because very little context was provided on the input, and the

transformer models need a context to perform well. SloBERTa

significantly outperforms other models, not only because it was

trained only on Slovene data, but largely because its tokenizer

is adapted to only Slovene language and does not need to cover

other languages.

5 CONCLUSIONS
We present SloBERTa, the first monolingual transformer-based

masked language model trained on Slovene texts. We show that

SloBERTa large pretrained masked language model outperforms

existing comparable multilingual models supporting Slovene on

four tasks, NER, POS-tagging, sentiment analysis, and word anal-

ogy. The performance on the DP task is competitive, but lags

behind some of the existing models.

In further work we intend to compare improvement of BERT-

like monolingual models over multilingual models for other lan-

guages.

The pre-trained SloBERTa model is publicly available via CLA-

RIN.SI
2
and Huggingface

3
repositories. We make the code, used

for preprocessing the corpora and training the SloBERTa, publicly

available
4
.
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