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Figure 1: Example transaction network visualization

ABSTRACT
Here we present early results of a network component for anom-

aly detection in an attributed heterogeneous financial network.

Utilizing both externally provided features and generated topo-

logical features, we train different models for a simple link pre-

diction task. We then evaluate the models using initial dataset

corruption. We show that gradient boosting and multi-layer per-

ceptron generally have the best anomaly detection performance,

despite graph neural network models initially showing better

results in the link prediction task.

KEYWORDS
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1 INTRODUCTION
Observing complex real-world graphs, be it a social, financial,

biochemical, or physics-related network, is an interesting task.

Given a time-evolving network and rich information about the

nodes and edges, can we assume that there are some regular

dynamics in the network?

Fraud and financial crime are important issues of our time.

According to the United Nations Office on Drugs and Crime, an

estimated 2-5 % of the world GDP is laundered each year. To

keep pace with evolving trends, the European Union has decided
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to strengthen its anti money laundering and terrorist financ-

ing regulatory framework and expects the same from financial

institutions and supervisory authorities.

Given a pseudonymized dataset of financial transactions, can

we use machine learning to detect interesting, perhaps novel,

patterns that should be inspected manually? In this paper, we try

to answer this question.

2 RELATEDWORK
Both supervised [7, 6, 12] and unsupervised or self-supervised [2,

14] learning approaches have been proposed to deal with the task

of detecting money laundering. Due to the lack of labelled data

and the closed nature of financial data and, therefore, the lack

of standardised datasets, approach evaluation can be difficult.

Despite that, cryptocurrency datasets such as [13] have been

published, explored, and labelled to some extent.

Usually, synthetic oversampling or other strategies of sampling

need to be employed in cases where labelled entities are used for

evaluation [12, 13].

3 DATA
In this study, we use a snapshot of the transaction data processed

through the international payment system Target2-Slovenija [11].
The dataset spans from November 2007 to December 2017, con-

taining around 8 million financial transactions. No live data was

used when performing this research - only archived datasets

were used.

For some nodes, the data about the sending or receiving party

is additionally linked to data from the Slovenian Business Register

(ePRS) [1] and the Slovenian TransactionAccount Registry (eRTR)

[3] in order to provide additional context about each transaction.
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Figure 2: Degree distribution by node type.

Due to the sensitive nature of the data, all personal and confi-

dential data about individuals and legal entities provided to JSI

is pseudonymized.

4 DATA REPRESENTATION AS A
HETEROGENEOUS GRAPH

There are large differences in the availability of data across differ-

ent entities performing the transactions. In order to fully utilize

all available features, we model the network as a heterogeneous

temporal graph. Here, we treat the snapshot of the transaction

graph from 𝑡0 to 𝑡1 𝐺 = 𝐺 (𝑡0, 𝑡1) as a heterogeneous graph con-

sisting of 3 discrete node types representing each entity’s legal

status. The types of accounts are those belonging to companies

(node type s), natural persons (node type p), and all other accounts
(node type o). Each transaction is represented as a directed edge

from its source account to its destination account.

4.1 Network statistics
Due to different legislative bases for different types of entities,

inherent differences regarding data availability are expected. Nat-

urally, it is also expected that different categories usually act

differently in a network - for example, companies usually trans-

act more than individuals.While the degree distribution (Figure 2)

closely resembles the power law, significant differences in dis-

tributions between different node types can be observed, which

can be attributed to varying amounts of data available for our

specific data source across account profiles.

It can be seen from Figure 2 that companies (node type s)
perform most of the transactions.

4.2 Feature generation
Categorical features are one-hot encoded. Rare categories with

< 2% incidence are marked as other. Additionally, node features
encoding the role of a node in the network (Table 1) are generated.

The node-level features for each node are computed on the whole

network as well as for the subgraph induced by the node’s own

type.

feature level

degree

deg(𝐴) = |𝑁 (𝐴) | node-level

PageRank [9]

𝑃𝑅(𝐴) = 1−𝑑
𝑁

+ 𝑑∑𝐽 ∈𝑁𝑖𝑛 (𝐴)
𝑃𝑅 ( 𝐽 )

|𝑁𝑜𝑢𝑡 ( 𝐽 ) | ; 𝑑 = 0.85
node-level

Jaccard coefficient

𝐽 (𝐴, 𝐵) = |𝑁 (𝐴)∩𝑁 (𝐵) |
|𝑁 (𝐴)∪𝑁 (𝐵) |

edge-level

Adamic-Adar Index

𝐴(𝑥,𝑦) = ∑
𝑢∈𝑁 (𝑥)∩𝑁 (𝑦)

1

log |𝑁 (𝑢) |
edge-level

Table 1: The structural features used for the link prediction
task. 𝑁 (·) represents the set of neighbours of the given
node. 𝑁𝑖𝑛 and 𝑁𝑜𝑢𝑡 represent the sets of the nodes from
which there is an edge to the given node (𝑖𝑛), or to which
there is an edge from the given node (𝑜𝑢𝑡). | · | represents
cardinality of the given set.

5 ANOMALY DETECTION PROBLEM
DEFINITION

We corrupt the original graph by rewiring the total of 𝑝 = 1%

randomly picked edges of each edge type.

Let 𝑓 : 𝑉 ×𝑉 → [0, 1] be a binary link prediction classifier that
is trained to predict the probability that a directed edge between

the two given nodes exists.

We define the anomaly score of edge (𝑖, 𝑗) ∈ 𝐸 as

𝜙 (𝑖, 𝑗) = 1 − 𝑓 (𝑖, 𝑗) (1)

The intuition behind equation 1 is that links that are typical to

the model would have a smaller anomaly score than links for

which the model predicts they would not exist (and are, thus,

anomalous).

6 RESULTS
We train several models for the downstream task of link predic-

tion and then use the predictions for anomaly detection.

6.1 Experiment details
The traditional (non-GNN) machine learning approaches are

trained to predict whether the given edge exists or not. For each

edge, the feature vector fed into the model is constructed by

concatenating source node features, destination node features,

and edge features. For traditional models, a model for each edge

type is constructed separately, while the graph neural network-

based models are the same across all edge types.

The GNN (graph neural network) models are constructed of 2

layers of GraphSAGE aggregations [8, 5] using parametric ReLU

activations and embedding dimensions of 128 for the first and

64 for the second layer. As messages are passed in the direction

of edges, we construct another model to facilitate information

diffusion both ways. We do this by adding edges of opposite

directionality than existing edges and marking them as a separate

edge types. We still, however, only train for the downstream link

prediction objective only on the existing (non-transposed) edges.

We mark this approach as GNN
+
.

The traditional ML models used are gradient boosting (Grad-

Boost), decision tree (DecTree), multi-layer perceptron (MLP) and

logistic regression (LogReg). The hidden layer sizes of the MLP

are 20 and 10, using ReLU activation in all layers except the last

one, where softmax activation is used. Different combinations of
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reasonable hidden layer sizes were tested (32+16, 64+32, 256+128,

128+128, 20+10) and the best one was selected. The training of

MLP models was performed with a batch size of 200.

6.2 Link prediction
Traditional ML models for link prediction map concatenated

source and destination node features and edge features to the

probability that a link between such nodes exists. The models are

implemented using scikit-learn [10] and are trained and evaluated

using 5-fold cross-validation.

As a preprocessing step, each feature is scaled individually

using a standard scaler such that it has a mean of 0 and a standard

deviation of 1 across the training set.

When training and evaluating each model, an approximately

equal number of positive and negative links is given to the classi-

fier. The provided edge features such as transaction amount are

sampled randomly for negative edges.

Additionally, we train a 2-layer graph neural network (GNN)

for link prediction. The GNN model is trained jointly for all edge

types using weighted binary cross-entropy loss. The model has

ReLU activations in all layers except the last one, where it has

softmax activation. The hidden layer sizes are 64 and 32. The

graph neural network is implemented using PyTorch Geometric

[4].

We use a random link split for link prediction and not a tempo-

ral one, as our end goal is not to predict future links, but rather to

learn what kinds of transactions are typical in the given network.

Table 2 shows the aggregated link prediction results. Bold

results highlight the best performance across observed methods.

The GNN does slightly improve link prediction performance in

some cases. See Appendix A for more detailed non-GNN method

results. The data here is computed across multiple year-long time

windows.

edge non-GNN no str. f. GNN GNN
+

ss 0.92 ± 0.01 0.89 ± 0.01 0.92 ± 0.02 0.94 ± 0.01
oo 0.80 ± 0.02 0.57 ± 0.01 0.79 ± 0.02 0.53 ± 0.04

so 0.83 ± 0.01 0.75 ± 0.01 0.88 ± 0.02 0.74 ± 0.04

os 0.76 ± 0.01 0.64 ± 0.01 0.81 ± 0.01 0.83 ± 0.02
sp 0.85 ± 0.02 0.69 ± 0.03 0.78 ± 0.05 0.73 ± 0.02

ps 0.74 ± 0.02 0.67 ± 0.01 0.87 ± 0.02 0.75 ± 0.04

po 0.78 ± 0.02 0.66 ± 0.01 0.84 ± 0.04 0.54 ± 0.08

op 0.89 ± 0.01 0.53 ± 0.01 0.78 ± 0.05 0.50 ± 0.05

all 0.84 ± 0.01 0.72 ± 0.01 0.86 ± 0.02 0.89 ± 0.01
Table 2: Link prediction performance comparison mea-
sured in area under the receiver operating characteristic
curve (AUC) (mean ± standard deviation). Edge types are
marked with two letters, representing the source and des-
tination node type in this order. Best non-GNN score, as
well as best non-GNN score without using any structural
features, are reported next to the GNN results.

6.3 Anomaly detection
For comparison between different methods, the 2% of edges with

the highest anomaly scores are flagged as positive. Precision and

recall are calculated by using the corrupted 1% of edges as true

positives.

To summarize precision and recall in a singlemetric, 𝐹1 score (2)

is calculated and reported.

edge non-GNN no str. f. GNN GNN
+

ss 0.19 ± 0.02 0.16 ± 0.02 0.01 ± 0.00 0.01 ± 0.00

oo 0.11 ± 0.02 0.02 ± 0.01 0.05 ± 0.02 0.03 ± 0.02

so 0.11 ± 0.02 0.06 ± 0.01 0.01 ± 0.01 0.01 ± 0.01

os 0.14 ± 0.02 0.06 ± 0.01 0.01 ± 0.00 0.01 ± 0.01

sp 0.08 ± 0.04 0.02 ± 0.02 0.02 ± 0.01 0.02 ± 0.02

ps 0.05 ± 0.02 0.05 ± 0.02 0.01 ± 0.01 0.01 ± 0.01

po 0.07 ± 0.04 0.07 ± 0.05 0.02 ± 0.02 0.01 ± 0.02

op 0.18 ± 0.04 0.02 ± 0.01 0.02 ± 0.01 0.03 ± 0.02

Table 3: Anomaly detection performance comparison in 𝐹1
score (mean ± standard deviation). Best non-GNN score, as
well as best non-GNN score without using any structural
features, are reported next to the GNN results. Bold results
highlight the best performance across observed methods.

𝐹−1
1

=
precision

−1 + recall
−1

2

(2)

A naive classifier that assigns the same positive score (recall

1) to each edge has 𝐹1 score of ≈ 0.02. However, the underrepre-

sented edge types typically have higher variance in 𝐹1 score and

performance insignificantly different from the naive baseline, as

seen from Table 3. The same goes for the GNN-based models. See

Appendix A for more detailed non-GNN model results.

7 DISCUSSION AND FUTUREWORK
We have constructed and evaluated a self-supervised approach

to anomaly detection in financial networks. Due to the lack of

labelled data, this is in most cases the most straightforward ap-

proach to tackle the problem with machine learning. There are

significant differences in performance across different edge types.

Using this approach yields almost comparable results with both

raw features and structural features when evaluated on company-

to-company transactions only. This may be explained by compa-

nies in our dataset having the most insightful features of all node

types such as the broader sector and also more precise company

industry type classification.

This paper has mainly focused on the use of unsupervised

learning for anomaly detection. In the future, we plan to extend

our work to supervised and semi-supervised learning approaches

to try to utilize the few labelled data points. The following ma-

chine learning strategies (or a combination of them) could be

tested:

• Active learning.Human-assisted active learning approach

is a natural way to incorporate domain knowledge into

the decision-making process.

• Synthetic oversampling. Due to a small number of the

positive examples, we could sample new examples that

are similar to them and assign them positive labels.

• Model pretraining and few-shot learning.Updatemodel

parameters with a self-supervised pretraining strategy

first, and then optimize it further on the few labeled data

points.
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