
SciKit Learn vs Dask vs Apache Spark
Benchmarking on the EMINST Dataset

Filip Zevnik, Din Music, Carolina Fortuna, Gregor Cerar
Department of Communication Systems, Jozef Stefan Institute

Ljubljana, Slovenia
zevnikfilip@gmail.com

Abstract—As datasets for machine learning tasks can become
very large, more consideration to memory and computing re-
source usage has to be given. As a result, several libraries for
parallel processing that improve RAM utilization and speed up
computations by parallelizing ML jobs have emerged. While
SciKit Learn is the typical go to library for practitioners, Dask
is a parallel computing library that can be used with SciKit
and Apache Spark is an analytics engine for large-scale data
processing that includes some machine learning techniques. In
this paper, we benchmark the three solutions for developing
ML pipelines with respect to data merging and loading and
subsequently for training and predicting on the extended MNIST
(eMNIST) dataset under Linux and Windows OS. Our results
show that Linux is the better option for all of the benchmarks.
For low amounts of data plain SciKit learn is the best option
for machine learning, but for more samples, we would choose
Apache Spark. On the other hand, when it comes to dataframe
manipulation Dask beats a normal pandas import and merge.

Index Terms—Apache Spark, Dask, machine learning, Pandas,
import

I. INTRODUCTION

As datasets for machine learning tasks can become very
large, more consideration to memory and computing resource
usage has to be given. As a result, several libraries for
parallel processing that improve RAM utilization and speed up
computations by parallelizing ML jobs have emerged. While
SciKit Learn [1] is the typical go to library for practitioners,
Dask [2] is a parallel computing library that can be used
with SciKit to improve memory and CPU utilization. Dask
improves memory utilization by not immediately loading all
the data, but only pointing to it. Only part of the data is loaded
on a per need basis. It also enables using all available cores on
a system to train a model. Apache Spark is an analytics engine
written in Java and Scala for processing large-scale data that
incorporates some machine learning techniques and is tightly
integrated with the Spark architecture.

While there are other libraries [3] that enable paralleliza-
tion of ML, when it comes to distributed computing tools
for tabular datasets, Spark and Dask are the most popular
choices today. Even though Spark is an older, more stable
solution, Dask is part of the vibrant Python ecosystem and both
technologies excel at parallelization. While the two solutions
have been already been benchmarked on big data pipelines

This work was funded by the Slovenian Research Agency ARRS under
program P-0016.

[4] and on various image processing and learning scenarios
[5]–[7]. The work in [7] is the closest to this one, however
they focused on evaluating the tradeoffs in parellelizing feature
extraction and clustering while this work focuses on evaluating
data loading and merging and subsequent classification.

In this paper, we benchmark the three solutions for devel-
oping ML pipelines with respect to data merging and loading
and subsequently for training and predicting on the extended
MNIST (eMNIST) dataset under Linux and Windows OS. Our
results show that Linux is the better option for all of the
benchmarks. For low amounts of data plain SciKit learn is
the best option for machine learning, but for more samples, we
would choose Apache Spark. On the other hand, when it comes
to dataframe manipulation Spark is behind Dask, and Dask
beats a normal pandas import and merge. The contribution of
this paper is the benchmarking of three ML libraries across
various data sizes and two operating systems on two parts of
the ML model development pipeline.

The remainder of the paper is structured as follows. Section
II discusses related work. Section III presents the methodology
used in the benchmarking. Section IV evaluates the compari-
son. Finally, Section V presents our conclusions.

II. RELATED WORK

Chintapalli et al. (2016) [8] compared streaming platforms
Flink, Storm and Spark. The paper focuses on real-world
streaming scenarios using ads and ad campaigns. Each strem-
ing platform was used to build a pipeline that identifies
relevant events, which were sources from Kafka. In addition,
Redis was used for storing windowed count of relevant events
per campaign. The test system contained 40 nodes, where each
node contained 2 CPUs with 8 cores and 24GB of RAM. All
nodes were interconnected using a gigabit ethernet connection.
The experiment encompassed Kafka producing events at set
rate with 30 minutes interval between each batch was fired.
The results showed that both Flink and Storm were almost
equal in terms of event latency, while Spark turned out to be
the slowest of the three.

Dugré et al. (2019) [4] compared Dask and Spark on the
neuroimaging big data pipelines. As neuroimaging requires a
large amount of images to be processed, Spark and Dask were
in the time of writing the best suited Big Data engines. The
paper compares the technologies with three different pipelines.
First is incrementation, second is histogram and the final



Fig. 1. Workflow of the Machine learning test example used for benchmarking.

one is a BIDS app example (a map-reduce style application).
All comparisons were done on BigBrain and CoRR datasets,
with sizes of 81GB and 39GB respectively. The authors have
concluded that all platforms perform very similarly and that
the incrementation of worker nodes is not always the optimal
solution due to the transfer times and overall overhead. While
all platforms yielded similar results, the Spark is claimed to
be the fastest out of the three platforms.

Nguyen et al. (2019) [6] evaluated SciDB, Myria, Spark,
Dask and TensorFlow to figure out which system is best suited
for image processing. Similarly to [4], the authors compared
the systems using different pipelines. For comparison, the
authors used 2 datasets, both over 100GB in size. The com-
parison reveled that Dask and Spark are comparable in the
performacnce as well as the ease of use.

Mehta et al. (2016) [5] presented the satellite data process-
ing pipeline. The pipeline consists of two steps, a feature
extraction step and a clustering step. The baseline pipeline
used the Caffe deep learning library and SciKit. The improved
pipeline used Keras along with Spark and Dask for multi-
node computation. They found that while Spark was the
fastest in terms of computational time required per task, Dask
used almost half the memory compared to Spark due to
recalculation of the intermediate values. SciKit Learn was not
able to complete the task and was excluded from the final
comparison. It was concluded that Spark is the best performer,
while Dask is the easiest to use.

Cheng et al. (2019) [7] presented a comparison of the
RADICAL-Pilot, Dask and Spark for image processing. All
three systems were tested using watershed and a blob detector
algorithms. Each test was split into two parts, a weak scaling
algorithm where the amount of data to be processed was
increased alongside the number of nodes, and a strong scaling
algorithm where the amount of data stayed the same and the
number of nodes increased. The evaluation showed that Dask
outperformed Spark on weak scaling, while Spark excelled in
the strong scaling part.

III. METHODOLOGY

To benchmark the three solutions, namely SciKit learn,
Dask and Spark, we single out two parts of the end-to-end
model development process depicted in Figure 1. We first

time the data importing and merging process, referred to as
Benchmark 1 in the figure, followed by model training and
evaluation denoted by Benchmark 2. While the time required
to train the model is usually the most important metric because
it takes up most of the computation time, importing and
merging the input data cannot be ignored. As described in
Algorithm 1, for Benchmark 1, training data was imported and
then merged. For SciKit Learn dataframes were used all along
and no parallelization was used while for Dask and Spark
parallelization was turned on.

Algorithm 1: Import and merge benchmarking process.

Enable parallelization
Require: data a and data b

Merge the DataFrames
Convert data to a pandas DataFrame

Algorithm 2: Train/fit and evaluate benchmarking process.

Enable parallelization
Import and setup data

train = [80% of the samples], test = [20% of the samples]
Define ML algorithm

Fit the data
Predict the samples

Evaluate - F1

As described in Algorithm 2, for Benchmark 2 in Figure
1, an example of machine learning with a decision tree
classifier depicts the workflow of the machine learning test
example. First, parellelization is enabled for Dask and Spark
and immediately after that the data is imported and modified
accordingly to fit the test scenario. Next, the decision tree
classifier is trained using various training data size, dividing
the data set into a training subset and a test subset. The
training subset represents 80% of the original dataset and for
the training subset the remaining data is used, representing
20% of the original dataset. Each task is run with 5 different
sample sizes, ranging from 50k to 250k samples, with a step of



50k samples. Finally, the execution report with the calculation
times of each task is generated.

To realize these benchmarks1, we used the extended MNIST
or EMNIST dataset2. The data set contains approximately
250k samples of handwritten digits, resulting in total size of
516MB. The size of all images is exactly the same, 28 by 28
pixels and each pixel has a value ranging from zero to 255. The
dataset is represented in the CSV (Comma Separated Values)
format with the first column being the label and the rest of the
columns representing 784 pixels. For the benchmarks, different
data set sizes, ranging from 50k to 250k samples with a 50k
step were generated.

In addition, each data set size was tested on Dask and
Spark with 1, 2 and 4 workers. Therefore, the programs used
to test computation time on Windows and Linux operating
systems have the same complexity. All tests were performed
on equivalent Windows and Linux virtual machines running
on the 6 CPU core machine with 10 GB of RAM.

IV. RESULTS

In this section we provide the results of the benchmarks
collected using the methodology described in Section III.

A. Import and merge

First, we present in Figure 2 the import and merge times for
100k samples on Linux without parallelization across the the
three platforms. In the first bar, it can be seen that importing
(i.e. loading the data into memory) takes most of the time with
Pandas. Merging (i.e. concatenation) is relatively negligible
while computation is not relevant in this case as after merging
it already returns the desired data structure. The total import
and merge time is slightly above 4s.

From the second bar, it can be seen that importing and
merging is negligible with Dask as doesn’t load anything into
memory at these steps, rather it prepares only recipes that
will be executed during the most time consuming compute
phase. During compute, Dask turns a lazy collection into its
in-memory equivalent, in our case, the Dask dataframe turns
into a Pandas dataframe. Overall, it can be seen that on a single
node, Dask is comparable to Pandas, with a total import and
merge time slightly below 4s.

Finally, from the last bar, it can be seen that Spark import
and merge are very fast and efficient, taking below 2s. How-
ever, when transforming the internal data structure of Spark
into pandas (i.e. during the compute phase in this case) is very
time consuming. We added this step so that the final outcome
is consistent with the other two (i.e. Pandas data structure),
however in the end-to-end ML pipeline the ML algorithm will
be trained directly using Spark’s internal data structure.

Figure 3 shows how the import and merge times fare as a
function of worker nodes for Dask across Linux and Windows.
As expected, a decreasing tendency of the import/merge times
with the increase of the working nodes can be seen. When

1Scripts for the benchmarks, https://github.com/sensorlab/parMLBenchmarks
2EMINST dataset - https://www.kaggle.com/crawford/emnist (accessed:

30.07.2022)

testing Spark on the import and merge benchmark, both Win-
dows and Linux ran out of memory with two and four workers.
Swap memory could be used to overcome this shortcoming,
however, the resulting comparison would not be fair because
the Dask benchmarks didn’t need the swap memory.

Fig. 2. Benchmark results of import and merge times at 100k samples: raw
data to Pandas.

Fig. 3. Benchmark results two operating systems, Dask with import and
merge on 250k samples.

B. Machine learning

Figure 4 shows the comparison of computation time be-
tween Dask, Spark, and SciKit on the Windows operating
system for different dataset sizes. Each column in the figure
represents the average computation time of 5 test runs. The
results show that Dask and Spark are almost equivalent when
the input dataset size is around 150k samples. Dask performs
better on smaller datasets, while Spark’s performance is best
on larger datasets. Interestingly, SciKit outperforms both Dask
and Spark on all dataset sizes, although it is not able to
parallelize tasks. This is most likely because of the transfer
times between nodes and the overall overhead of Dask and
Spark. Since the datasets fit completely into the computer’s
memory, SciKit has no problems computing them, while Dask
and Spark only cause unnecessary overhead. However, Dask
and Spark are meant for large clusters with hundreds or even



thousands of nodes, while SciKit is meant for computations
on a single computer.

Fig. 4. Computational time for different dataset sizes on Windows operating
system.

Figure 5 shows the results of the same experiment per-
formed on the Linux operating system. Compared to the Figure
4, the results are very similar, with only difference that on
Linux operating system Dask performs better then Spark even
when input data set contains 150k samples.

Table I shows the F1 scores. An F1 score is the harmonic
mean (alternative metric for the arithmetic mean) of precision
and recall. The precision gives information on how many of
the predicted samples that have been predicted as positive
are correct. The recall gives information on how many of all
positive samples the model managed to find.

Fig. 5. Computational time for different dataset sizes on Linux operating
system.

TABLE I
TABLE OF F1 SCORES FOR WINDOWS BENCHMARKS FOR VARIOUS

SAMPLE SIZES (SIMILAR FOR LINUX).

Number of samples (x1000)
50 100 150 200 250

Spark 0.71 0.73 0.73 0.71 0.71
Dask 0.71 0.72 0.73 0.71 0.70
Scikit 0.70 0.71 0.70 0.71 0.73

The machine learning benchmark measured the time to cast
all columns into smaller data types. It seems that Dask has
a dedicated function to cast all of the columns of a Dask
dataframe at once whereas with the Spark function you have
to cast each column one by one. The Dask casting was faster
(0.06s) than Sparks (7.2s).

V. CONCLUSIONS

In this paper we benchmarked two parallel computing
technologies, Dask and Apache Spark, against each other
and against the single node SciKit Learn. The benchmarks
were computed on the EMNIST dataset for various subsets
from 50k to 250k samples on different operating systems and
various degrees of parallelization. The results show a slight
advantage on running the training pipeline on Linux rather
than on Windows. Dask is seen as superior in dataframe
manipulation while Apache Spark has a superior end-to-end
processing performance on larger datasets with comparable
final F1 scores.

ACKNOWLEDGMENTS

This work was funded in part by the Slovenian Research
Agency under the grant P2-0016.

REFERENCES

[1] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al.,
“Scikit-learn: Machine learning in python,” the Journal of machine
Learning research, vol. 12, pp. 2825–2830, 2011.

[2] M. Rocklin, “Dask: Parallel computation with blocked algorithms and
task scheduling,” in Proceedings of the 14th python in science conference,
vol. 130, p. 136, Citeseer, 2015.

[3] S. Celis and D. R. Musicant, “Weka-parallel: machine learning in paral-
lel,” in Carleton College, CS TR, Citeseer, 2002.

[4] M. Dugré, V. Hayot-Sasson, and T. Glatard, “A performance comparison
of dask and apache spark for data-intensive neuroimaging pipelines,” in
2019 IEEE/ACM Workflows in Support of Large-Scale Science (WORKS),
pp. 40–49, 2019.

[5] P. Mehta, S. Dorkenwald, D. Zhao, T. Kaftan, A. Cheung, M. Balazinska,
A. Rokem, A. Connolly, J. Vanderplas, and Y. AlSayyad, “Comparative
evaluation of big-data systems on scientific image analytics workloads,”
vol. 10, p. 1226–1237, VLDB Endowment, aug 2017.

[6] M. H. Nguyen, J. Li, D. Crawl, J. Block, and I. Altintas, “Scaling
deep learning-based analysis of high-resolution satellite imagery with
distributed processing,” in 2019 IEEE International Conference on Big
Data (Big Data), pp. 5437–5443, 2019.

[7] M. T. S. J. William Cheng, Ioannis Paraskevakos, “Image processing
using task parallel and data parallel frameworks,” pp. 1–7, 2019.

[8] S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holderbaugh,
Z. Liu, K. Nusbaum, K. Patil, and B. J. Peng, “Benchmarking streaming
computation engines: Storm, flink and spark streaming,” 2016.


