
Visualization of consensus mechanisms in PoS based
blockchain protocols

Daniil Baldouski

University of Primorska

Koper, Slovenia

d.baldovskiy@mail.ru

Aleksandar Tošić

University of Primorska

Koper, Slovenia

Innorenew CoE

Izola, Slovenia

aleksandar.tosic@upr.si

ABSTRACT
In the past decade, decentralized systems have been increasingly

gaining more attention. Much of the attention arguably comes

from both financial, and sociological acceptance, and adoption of

blockchain technology. One of the frontiers has been the design

of new consensus protocols, topology optimisation in these peer

to peer(P2P) networks, and gossip protocol design. Analogue

to agent based systems, transitioning from the design to imple-

mentation is a difficult task. This is due to the inherent nature

of such systems, where nodes or actors within the system only

have a local view of the system with very little guarantees on

availability of data. Additionally, such systems often offer no

guarantees of a system wide time synchronisation. This research

offers insight into the importance of visualisation techniques in

the implementation phase of vote based consensus algorithms,

and P2P overlay network topology. We present our custom visual-

isations, and note their usefulness in debugging, and identifying

potential issues in decentralized networks. Our use case is an

implementation of a blockchain protocol.

KEYWORDS
Grafana, visualisation, consensus mechanism, blockchain proto-

cols, P2P, overlay network

1 INTRODUCTION
Distributed systems are notoriously difficult to inspect and their

problems difficult to identify. The difficulty stems from the fact

that predominant issues can be stochastic and difficult to repro-

duce, and from the inability to easily observe, compare, and test

multiple programs running on separate machines at the same

time. Another important aspect in distributed systems is that they

inherently make heavy use of the network. The use of various net-

work protocols imposes additional complexity, which increases

the search space in identifying bugs. In recent years, distributed

systems have been gaining more attention both in academia and

private sector. This increasing interest can be largely attributed

to the rapid development of distributed ledger technology, and

blockchain. In recent years, many new consensus mechanisms,

blockchain protocols, network protocols, improvement in gossip

protocols have been proposed. Many of them are transitioning

from a theoretical framework to a practical implementation. How-

ever, public distributed ledgers (or distributed ledger technology

or DLT) and blockchains secure their consensus mechanisms and

Permission to make digital or hard copies of part or all of this work for personal

or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this

work must be honored. For all other uses, contact the owner/author(s).

Information Society 2022, 10–14 October 2022, Ljubljana, Slovenia
© 2022 Copyright held by the owner/author(s).

provide spam resistance through the use of tokens representing

value. The use of digital value within the protocol enables the

protocol to enforce a level of security through economic incen-

tives, and game theoretical aspects that make most attack vectors

economically infeasible or impractical for the attacker. A good

example of this is the Proof of Stake (PoS) consensus mechanism,

where nodes in the decentralized protocol secure the consensus

mechanism by requiring nodes to stake and lock up a consider-

able amount of value, which can be deducted (usually refereed

to as slashing) by the protocol in case the node misbehaves. The

economic aspect of public blockchains poses a very high secu-

rity risk. With such strong economic incentives to identify and

exploit potential bugs, and system faults, it is of upmost impor-

tance for the developers to thoroughly test and examine potential

problems. However, the aforementioned difficulties in debugging

distributed and decentralized protocols require developers to be

equipped with tools that supports their efforts.

In this study, we review the state of the art approaches in

testing and debugging voting based consensus mechanisms and

decentralized networks. We develop a visualisation specifically

designed for researchers and developers to test such networks

and compare real-time observed data with the expected. We con-

clude that visualisation techniques can be complementary to

traditional log based debugging, and testing techniques. More-

over, we provide our tools as open source software as plugins

for popular visualisation platform Grafana. Both tools make no

assumptions on the data storage implementation. The plugins

can be configured via Grafana plugin configuration interface to

fit the specifics of the protocol implementation. We validate our

tools by applying them to a custom developed blockchain, and

then explain how successful they turned out to be in identifying

anomalies and bugs in the protocols.

2 THE ROLE OF VISUALIZATIONS IN
DEBUGGING COMPLEX DISTRIBUTED
SYSTEMS

Distributed and decentralized systems are difficult to debug as

developers are working on the third layer. Which includes L1

(code level bugs), issues with concurrency on L2 (individual run-

time), and finally the third dimension for potential bugs arising

from the message exchange between nodes. In general, it is often

hard to capture the state in a distributed system as debuggers

cannot be attached to all nodes’ run-times. Additionally, it is often

difficult to reproduce errors when they are inherently stochastic.

We consider several methods, such as Logging, Remote debugging,
Simulations and Visualisations.

• Logging is the most common debugging method for all

three layers. However, in distributed systems it is impor-

tant to aggregate logs, and analyze them as a time series.

Information Society 2022, 10–14 October 2022, Ljubljana, Slovenia Daniil Baldouski and Aleksandar Tošić

Additionally, aggregating distributed logs assumes the sys-

tem has some method of clock synchronization protocol.

Log collection has been proven to be effective in detecting

performance issues for systems such as Hadoop [12] and
Darkstar [13]. The aggregation can be done with specific

tools for log collection such as InfluxDB [8], Logstash [10],

etc. Aggregated logs then can be viewed in a form of a

dashboard using tools like Grafana (see Figure 1).

Figure 1: Part of the Grafana dashboard used by developers
to gain insight into a running PoS based blockchain net-
work.

• Remote debugging is a technique where a locally running

debugger is connected to a remote node in the distributed

system. This allows developers to use the same features

as if they were debugging locally. However, it is difficult

to determine which remote node should be debugged. Ad-

ditionally, in case of Byzantine behaviour due to network

faults connecting the debugger could fail.

• Distributed deterministic simulation and replay is a tech-

nique that attempts to address the issues of reproducibility

in distributed systems. Tools like Friday [5] and liblog [6]
can be used to record the specific state of the network

to use and analyze it later. The technique suggests imple-

menting an additional layer that abstracts the underlying

hardware and the network interfaces to allow for an exact

replay of all the state changes and messages exchanged be-

tween nodes. Tools such as FoundationDB or even custom

systems are built on containerisation software.

• Visualisation and time series analysis attempts at captur-

ing the state of the system, and all the nodes by visual-

ising the collected logs. Tools like Prometheus [11] and

Grafana [2] are used extensively. Tools like Theia [4] and
Artemis [3] are designed for monitoring and analyzing

performance problems in distributed systems and support

built-in visualization tools for data exploration. However,

such tools provide logs aggregated based summaries of

the distributed systems and are not capable of observing

underlying low-level network properties, e.g. monitoring

network communication, especially in real-time while the

system is running. ShiViz [1] on the other hand displays

distributed system executions as an interactive timespace

diagram. With this tool all the necessary events and inter-

actions can be viewed in an orderly manner and inspected

in detail. ShiViz visualization is based on logical order-

ing, meaning that unlike our tools, it is not capable of

running in real-time, together with the considered dis-

tributed network. ShiViz also works with aggregated logs

about various types of events of the distributed system

and unlike our tools does not support direct database con-

nections. ShiViz is generalized and works with all kind of

distributed systems, while our tools are created specifically

for monitoring PoS voting based consensus mechanisms

and underlying network topology of the distributed sys-

tem.

3 RESEARCH OBJECTIVES
The main goal of this research is to build visualisation tools that

offer more insight into a running distributed system using the

time series log collection data. The targeted system is a custom

proof of stake based blockchain. Such tools should visualize if

nodes contributing to the consensus learned about their correct

roles, and if they perform their roles accordingly. In the consensus

algorithms this is done by sending messages, so the tools should

visualise messages exchanged between nodes.

In the structured P2P networks information spreads using

gossip protocols and network topology changes every time slot.

Our tools should visualize such changes in the network topology

by drawing nodes and their cluster representatives, while at the

same time indicating the consensus roles for each node.

In our implementation time series data comes from InfluxDB,

but we want our tools to have no assumption on the data storage

implementation and there are other popular databases, such as

kdb+ and Prometheus, that work well with time series data. Be-

cause of that we choose Grafana as a platform for visualizations,

which supports all of the aforementioned databases and many

more at the time of writing.

In this work we implement two Grafana plugins built to vi-

sualize PoS based blockchains, and decentralized network topol-

ogy. Our tools are designed with generality in mind, and are

hence applicable to other PoS voting based blockchains and other

distributed ledger implementations. We evaluate our tools by

applying it to the custom developed blockchain and note their

usefulness in debugging and identifying potential issues in de-

centralized networks.

4 GRAFANA PLUGINS FOR VISUALISING
VOTE BASED CONSENSUS MECHANISMS
AND P2P OVERLAY NETWORKS

We have developed two plugins that extend the functionality of

Grafana. Figure 2 outlines the architecture used in production.

A server running a database instance (preferably time series i.e.

InfluxDB), and the Grafana platform. Depending on the underly-

ing blockchain implementation, nodes can insert their telemetry

directly to the database, or if possible have an archive node gather

telemetry from nodes, and report them. In this example, a cluster

was used to run multiple nodes. A coordinating node is responsi-

ble for maintaining an overlay network and serving the nodes

within the overlay with a DHCP, DNS, and routing. Nodes are

packed within docker containers and submitted to the coordina-

tor, which uses built in load balancing and distributes them to

other cluster nodes.

The telemetry inserted is timestamped to create a time series

stream of data that is consumed by Grafana. Figure 1 shows a

small part of the dashboard createdwithinGrafana using the built-

in plugins for typical visualisations. These visualisations are time

series data of a running blockchain showing telemetry reported

by the nodes. However, rendering telemetry from hundreds of

nodes as factors is hardly informative.

Both plugins were developed as React components, using a

well-known D3.js JavaScript library for animations and life-cycle

of the plugins is managed by Grafana

Visualization of consensus mechanisms in PoS based blockchain protocols Information Society 2022, 10–14 October 2022, Ljubljana, Slovenia

Docker Swarm

P2P Overlay Network

Web Server

Telemetry

InfluxDB

Master
Node

Cluster
Node 2

Cluster
Node 3

Cluster
Node n

Cluster
Node 1

T

Grafana

Figure 2: System architecture.

4.1 Network Plugin
P2P networks propagate information using gossip protocols.

There are many variations of the general and implementation

specifics but in general the family of protocols aims at gossiping

the fact that new information is available in the network. Should

a node hear about the gossip, and require the information it will

contact neighbouring nodes asking for the data. In general, gos-

sip protocols make no assumptions about the topology of the

overlay network. However, with structured networks, the infor-

mation exchange can be made much more efficient. The observed

blockchain implementation utilized a semi structured network

topology for propagating consensus based information. This is

made possible by using a seed string shared between nodes that

is used for pseudo-random role election every block. Using the

seed, nodes self-elect into roles without the need to communicate.

However, when performing roles, committee members must at-

test to the candidate block produced by the block producer. The

seeded random is therefore also used to cluster the network using

a k-means algorithm. The clustering is again performed by each

node locally. The shared seed guarantees that nodes will produce

the same topology, which is then used to efficiently propagate

attestations to the block producer.

The network topology hence changes every slot. The plugin

aims to visualize the changes in the network topology by draw-

ing nodes, and their cluster representatives. Additionally, the

consensus roles for each node are indicated with the vertex color.

Figure 3 shows the network plugin rendering a test network of

30 nodes in real-time. The node in the center coloured green is

the elected block producer for the current slot, nodes surrounded

by the red stroke are cluster representatives, the rest of the nodes

are coloured based on their role in the current slot.

Figure 3: Network topology plugin visualising a test net-
work of 30 nodes in real time.

4.2 Consensus Plugin
The aim of visualising the consensus mechanism is to quickly

evaluate if nodes contributing to the consensus learned about

their correct roles, and if they perform their roles accordingly. In

order to have a scalable visualisation, nodes are placed around a

circle, and scaled according to the size of the network. Roles are

visualized with a color map. Each slot, nodes change their roles,

and execute the protocol accordingly. To visualise the execution,

the plugin visualises messages exchanged between nodes in a

form of animated lines flying from an origin node to the desti-

nation node. The animations are time synchronous, and transfer

times, and latencies are taken into account. Additionally, every

message is logged with a type, indicating the sub protocol within

which it was created. As an example, messages being sent from

committee members to the block producer are attestations for

the current block. The animated lines are coloured indicating the

message type.

The thickness of the animated lines indicates the size of the

payload transferred between nodes. Figure 4 shows the consensus

plugin running live visualising a test network of 30 nodes. The

green coloured node indicates the block producer role for the

current slot, nodes coloured violet are part of the committee, and

blue nodes are validators.

Figure 4: Consensus plugin (with legend) visualising a test
network of 30 nodes in real time.

4.3 Generality
In order to use the above plugins, users have to provide certain

data to the Grafana dashboard and this can be done through

Grafana GUI. For the plugins to work all of the data should follow

a specific naming policy. For example, for the Consensus plugin

there is one necessary query to visualize data about the nodes of

the network. It can be provided using SQL or Grafana GUI:

SELECT "slot", "node", "duty" FROM "<table-name>"
WHERE $timeFilter

Both plugins can be customized from the Grafana options

menu. For example, users can add new roles, name and color

them. Figure 5 shows the consensus plugin options menu, where

users can additionally turn on or off display of messages, nodes

or containers labels and so on. For both plugins, users have to

manually provide the slot time of the network in the plugins

options menus.

Figure 5: Consensus plugin options menu.

Information Society 2022, 10–14 October 2022, Ljubljana, Slovenia Daniil Baldouski and Aleksandar Tošić

By using our tools we can visualize other protocols. For exam-

ple with the consensus plugin we can visualize the famous Paxos

algorithm, first introduced in [7] by Leslie Lamport. For that, we

should provide the plugin with the Nodes and Messages queries.
For the Nodes query, parameters slot, node and duty should be

provided, which represent the slot number, node id and the role

of the node respectively. From the point of nodes and slots, for

this visualization Paxos works in the same way as the example

of the PoS based consensus we mentioned before. For the duty
parameter, nodes can have one of the three roles: proposer, ac-
ceptor or learner. That is why in the options menu of the plugin

we should create 3 roles and name them according to the names

from the data table.

We should specify slot time (in seconds) in the plugin options

menu and at this point we can set the Grafana dashboard refresh

time and see the results, since all the necessary conditions are

fulfilled. But in order to gain more information from the plugin,

we should add the Messages query. For the data we should have

the following parameters: id, source, target and endpoint, which
represent the message id, node id that sends the messages, node

id that receives the message and the type of the message. For

the additional information we can specify parameters delay (in
seconds) and size of the message.

If we know the expected amount of nodes for some role, we

can put it in the in plugin options menu to see this information in

the plugin legend. In a similar way we should be able to visualize

other consensus protocols, for example 2PC or Raft [9].

Source code for both plugins is open source, licensed under

the MIT license and available on GitLab, where users can find

the installation procedure of the plugins:

• Network plugin - https://gitlab.com/rentalker/topology-

visualization-plugin,

• Consensus plugin - https://gitlab.com/rentalker/consensus-

visualization-plugin.

5 CONCLUSION
We developed two Grafana plugins for visualising PoS based

blockchains, and the underlying overlay network topology. The

plugins were used to identify critical bugs, and faults in the

protocol. With the help of visualisations, we were able to detect

two problems when running test-nets.

• Network congestion: for every slot, validators must re-

port their statistics to the block producer. Prompt delivery

is desired but not critical. However, as the network grew in

size, reporting statistics to a single node (block producer)

became increasingly latent as all nodes attempted to prop-

agate messages in tandem, and even more importantly,

the network topology required a lot of routing for mes-

sages to arrive to the block producer. The network plugin

helped us identify what the problem was by looking at the

topology.

• State synchronisation: at random, nodes failed to per-

form their roles. This resulted in missing votes even on

small test-nets, and sometimes a chain halt where no

blocks were produced for the slot. We observed the likeli-

hood of this happening grows in correlation with network

size. However, it was infeasible to debug the state of all

nodes in a large network. Visualising the state of nodes

at a given slot we observed that states were not always

synchronized and hence, some nodes did not learn about

their consensus role.

We conclude that visualisation is an important tool in design

and implementation of decentralized, and distributed systems.

The methods serve a complementary role to existing debugging

methods, and are very powerful at observing unexpected be-

haviour of the system as a whole. Visualisation techniques are

specifically important in detecting stochastic faults that are non-

trivial to reproduce. Our tools are open-source and available for

researchers and engineers to use. They are suitable for testing

any kind of voting-based consensus protocol with little effort.

For future work we would like to further develop our tools

to accommodate other consensus protocols and help developers

visualize and debug other types of issues related to distributed

systems. Also, we would like to explore other types of visualiza-

tions and other existing tools that can help developers as well.

Since Grafana is rapidly evolving, our developed plugins can be

updated and new technologies can be integrated with our tools

to improve their performance.

6 ACKNOWLEDGMENTS
The authors gratefully acknowledge the European Commission

for funding the InnoRenew CoE project (H2020 Grant Agreement

#739574) and the Republic of Slovenia (Investment funding of the

Republic of Slovenia and the European Union of the European

Regional Development Fund) as well as the Slovenian Research

Agency (ARRS) for supporting the project number J2-2504 (C).

REFERENCES
[1] Beschastnikh, I., Wang, P., Brun, Y., and Ernst, M. D. Debugging distributed

systems. Commun. ACM 59, 8 (jul 2016), 32–37.
[2] Chakraborty, M., and Kundan, A. P. Grafana. In Monitoring Cloud-Native

Applications. Springer, 2021, pp. 187–240.
[3] Creţu-Ciocârlie, G. F., Budiu, M., and Goldszmidt, M. Hunting for prob-

lems with artemis. In Proceedings of the First USENIX Conference on Analysis
of System Logs (USA, 2008), WASL’08, USENIX Association, p. 2.

[4] Garduno, E., Kavulya, S. P., Tan, J., Gandhi, R., and Narasimhan, P. Theia:

Visual signatures for problem diagnosis in large hadoop clusters. In Proceedings
of the 26th International Conference on Large Installation System Administration:
Strategies, Tools, and Techniques (USA, 2012), lisa’12, USENIX Association,

p. 33–42.

[5] Geels, D., Altekar, G., Maniatis, P., Roscoe, T., and Stoica, I. Friday: Global

comprehension for distributed replay. vol. 7.

[6] Geels, D., Altekar, G., Shenker, S., and Stoica, I. Replay debugging for

distributed applications. In 2006 USENIX Annual Technical Conference (USENIX
ATC 06) (Boston, MA, May 2006), USENIX Association.

[7] Lamport, L. The part-time parliament.ACM Transactions on Computer Systems
16, 2 (May 1998), 133-169. Also appeared as SRC Research Report 49. This paper
was first submitted in 1990, setting a personal record for publication delay that
has since been broken by [60]. (May 1998). ACM SIGOPS Hall of Fame Award

in 2012.

[8] Naqvi, S. N. Z., Yfantidou, S., and Zimányi, E. Time series databases and

influxdb. Studienarbeit, Université Libre de Bruxelles 12 (2017).
[9] Ongaro, D., and Ousterhout, J. In search of an understandable consen-

sus algorithm. In Proceedings of the 2014 USENIX Conference on USENIX An-
nual Technical Conference (USA, 2014), USENIX ATC’14, USENIX Association,

p. 305–320.

[10] Sanjappa, S., and Ahmed, M. Analysis of logs by using logstash. In Proceedings
of the 5th International Conference on Frontiers in Intelligent Computing: Theory
and Applications (Singapore, 2017), S. C. Satapathy, V. Bhateja, S. K. Udgata,
and P. K. Pattnaik, Eds., Springer Singapore, pp. 579–585.

[11] Turnbull, J. Monitoring with Prometheus. Turnbull Press, 2018.
[12] Xu, W., Huang, L., Fox, A., Patterson, D., and Jordan, M. Online system

problem detection by mining patterns of console logs. In 2009 Ninth IEEE
International Conference on Data Mining (2009), pp. 588–597.

[13] Xu, W., Huang, L., Fox, A., Patterson, D., and Jordan, M. I. Detecting large-

scale system problems by mining console logs. In Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles (New York, NY, USA,

2009), SOSP ’09, Association for Computing Machinery, p. 117–132.

https://gitlab.com/rentalker/topology-visualization-plugin
https://gitlab.com/rentalker/topology-visualization-plugin
https://gitlab.com/rentalker/topology-visualization-plugin
https://gitlab.com/rentalker/topology-visualization-plugin

	Abstract
	1 Introduction
	2 THE ROLE OF VISUALIZATIONS IN DEBUGGING COMPLEX DISTRIBUTED SYSTEMS
	3 Research Objectives
	4 GRAFANA PLUGINS FOR VISUALISING VOTE BASED CONSENSUS MECHANISMS AND P2P OVERLAY NETWORKS
	4.1 Network Plugin
	4.2 Consensus Plugin
	4.3 Generality

	5 Conclusion
	6 Acknowledgments

