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ABSTRACT

Hubness-aware classifiers are recent variants of k-nearest neighbor.
When training hubness-aware classifiers, the computationally most
expensive step is the calculation of hubness scores. We show that
this step can be sped up by an order of magnitude or even more if
it is implemented in Cython instead of Python while the accuracy
is the same in both cases.
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1 INTRODUCTION

Nearest neighbor classifiers are simple, intuitive and popular, there
are theoretical results about their accuracy and error bounds [6].
However, nearest neighbors are affected by bad hubs. An instance
is called a bad hub, if it appears surprisingly frequently as nearest
neighbor of other instances, but its class label is different from
the labels of those other instances. Bad hubs were shown to be
responsible for a surprisingly large fraction of the total classification
error [10].

In order to reduce the detrimental effect of bad hubs, hubness-
aware classifiers have been introduced, such as Hubness-Weighted
k-Nearest Neighbor (HWKNN) [9], Naive Hubness Bayesian Near-
est Neighbor (NHBNN) [16] and Hubness-based Fuzzy Nearest
Neighbor (HFNN) [14]. Hubness has also been studied in context of
collaborative filtering [8], regression [3], clustering [15], instance
selection and feature selection [13]. Recently, hubness-aware en-
sembles have been proposed [17] and used for the classification of
breast cancer subtypes [12].

Other prominent applications of hubness-aware methods include
music recommendation [7], time series classification [11], drug-
target prediction [4] and classification of gene expression data [2].
Last, but not least, we mention that even neural networks may
benefit from hubness-aware weighting [5].

Hubness-aware classifiers may be implemented in various pro-
gramming languages, one of the most prominent implementation
is probably the Java-based HubMiner! library.

!https://github.com/datapoet/hubminer
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In case of the aforementioned hubness-aware classifiers, the
computationally most expensive step of the training is to deter-
mine the hubness scores of training instances, i.e., how frequently
they appear as (bad) nearest neighbors of other instances. In this
paper, we address this issue by a Cython-based implementation.
Cython [1] aims to combine the advantages of Python (rapid proto-
typing and clarity thanks to concise code) with the efficiency of C.
In particular, we implement the computation of hubness scores in
Cython. Compared with a standard implementation in Python, we
observed up to 25 times speedup on the Spambase dataset? from
the UCI repository (and the speedup is likely to be even more in
case of larger datasets).

2 BACKGROUND: HUBNESS-AWARE
WEIGHTING

We say that an instance x is a bad neighbor of another instance x’
if (i) x is one of the k-nearest neighbors of x” and (ii) their class
labels are different. In case of hubness-aware weighting [9], first we
determine how frequently each instance x appears as bad neighbor
of other instances. This is denoted as BNy (x). Subsequently, the
normalized bad hubness score hy, (x) of each instance x is calculated
as follows:
iy (x) = BNy (x) — p(BNg) (1)
o(BNy)
where ;(BNy) and o(BN}) denote the mean and standard devia-
tion of the BNy (x) values over all instances of the training data.
HWKNN performs weighted k-nearest neighbor classification, the
weight of each training instance is w(x) = e~ (*)_For a detailed
illustration of HWKNN we refer to [13].

3 CYTHON-BASED IMPLEMENTATION OF
HUBNESS CALCULATIONS

Python code is usually run by an interpreter which makes the
execution relatively slow. Much of the inefficiency originates from
dynamic typing: for example, the actual semantic of the ’+” symbol
depends on the types of the operands. It may stand for addition of
numbers, concatenation of strings or lists, element-wise addition of
arrays, etc. Which of the operations to perform, will be determined
by the interpreter at execution time.

The core idea of Cython? is to annotate variables according to
their types and to compile the resulting code into C which will
further be compiled into binary code for efficient execution. In
case of computationally expensive functions, this may results in

Zhttps://archive.ics.uci.edu/ml/datasets/spambase
3https://cython.org/
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Figure 1: Runtime (in second, vertical axis) of hubness score
calculation in case of Python-based (dashed line with ’x’) and
Cython-based (solid line with bullets) implementations for
various number of instances (horizontal axis).

several orders of magnitude speedup. At the same time, functions
implemented in Cython can be called from Python code just like
Python functions.

We implemented the calculation of hubness scores both in Python
and Cython, and made the code available in our github repository:

https://github.com/kr7/cython .

We evaluated both implementations on the Spambase dataset
from the UCI repository. The dataset contains 4601 instances and
57 features (without the class label). Each instance corresponds to
an e-mail. For each e-mail, the same features were extracted. The
associated classification task is to decide whether the e-mail is spam
or not.

We used 100 instances as test data and 4500 instances as training
data. We run the experiments in Google Colab.* We used k = 10
nearest neighbors both for the calculation of hubness scores and
the final classification. According to our observations, the Cython-
based calculation of hubness scores was more than 20 times faster
than the standard implementation in Python. Both versions pro-
duced the exactly same BNy (x) scores. As the weight of an instance
x only depends on its BN (x) score, both versions produce the same
predictions. Therefore the accuracy (0.94) is equal in both cases.

We repeated the experiments with using only 1000, 2000 and
3000 instances as training data. As Fig. 1 shows, the Cython-based
implementation was consistently faster than the implementation in
Python. Note that logarithmic scale is used on the vertical axis. The
difference showed an increasing trend when more training data
was used: whereas in case of 1000 training instances, the Cython-
based implementation was only about 12 times faster than the
Python-based implementation, in case of 4500 training instances,
the speedup factor was approximately 25. This may be attributed to
the non-linear complexity of hubness score calculations. Assuming
a naive implementation, determination of the nearest neighbors of
an instance is linear in the size of the training data. However, in
order to calculate the hubness scores, the nearest neighbors of all

4https://colab.research.google.com
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the training instances have to be determined. Thus the resulting
overall complexity is quadratic.

We note that, both in case of Cython and Python, indexing tech-
niques may be used to speed up the determination of the nearest
neighbors. However, we omitted indexing in our implementation
for simplicity.

4 DISCUSSION

In order to calculate distances effectively, we used pairwise dis-
tances from scikit-learn in our experiment. However, in case of
large datasets, it may be necessary to calculate distances on the fly,
as the distance matrix may be too large to be stored in RAM. In
such cases, it may be worth considering to implement the distance
calculations in Cython as well. In our previous works, we observed
that the calculation of dynamic time warping distance was several
orders of magnitudes faster when we implemented it in Cython
instead of Python.

In case of very large datasets, straight forward calculation of
hubness scores may be infeasible due to its quadratic complexity
even if the calculations are implemented in Cython. In such cases,
the aforementioned indexing techniques and/or calculation of ap-
proximate hubness scores (e.g. using a random subset of the data)
may be necessary.

As future work, we plan an exhaustive evaluation of both im-
plementations with respect to various datasets with different sizes
and number of features.
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