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ABSTRACT
Identifying the molecular structure of unknown organic com-

pounds is a major challenge when dealing with mass spectrome-

try (MS) data. Understanding these structures is crucial for clas-

sifying and studying molecules, especially in fields like environ-

mental science. Research efforts in the recent two decades have

resulted in generation of rich MS data, both liquid chromatogra-

phy (LC)-MS and gas chromatography (GC)-MS data, that can

be exploited in exploring the possibilities of machine learning

approaches in compound identification.

Our approach aims to predict molecular fingerprints directly

frommass spectra. Fingerprint bits correspond tomolecular struc-

tures and consequently, prediction of these will directly reveal

the underlying features of the molecule. Obtaining a molecu-

lar fingerprint thus allows researchers to identify the studied

molecules and to query larger databases of chemical structures

(such as PubChem) to discover related molecules. Ultimately, our

method makes it easier to identify molecules and their structural

characteristics from MS, even in fields where data is scarce.
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1 DATA
1.1 Overview
The dataset we study [7] is composed of GC-MS, along with meta-

data information about the molecules. The molecules considered

are derivatives of environmentally relevant compounds. Meta-

data contains the molecule name, formula, exact mass, PubChem

ID, InChI, InChI Key, and SMILES of the trimethysilyl (TMS),

derivative along with identical data for the parent compound [9].

PubChem ID is included for the PubChem database, which is one

of the largest repositories of molecular entities. SMILES, InChI,

and InChI Key are molecular descriptors, providing a standard

for encoding molecular information. These identifiers can be

used to obtain further information about the molecule in public

compound databases and MS libraries [2].
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GC-MS spectra show mass to charge ratios (m/z). Each GC-MS

spectrum exhibits identifiable spikes called peaks, which hold

significant value for compound structure classification, but also

correlate to structural information [3].

Mass spectrometry has many different methods which can

be employed. The data used in this study (GC-MS spectra) are

obtained using electron impact ionization (EI). Gas chromatogra-

phy involves heating the sample, which must possess volatility

and thermal stability. The ionization process, on the other hand,

occurs through electron emission. [5].
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Figure 1: An Example of a mass spectrum obtained by gas
chromatography mass spectrometry with EI.

1.2 Dataset
We used spectra produced by the authors (Milka Ljoncheva),

which have been made publicly available [7]. These are spectra of

TMS derivatives [9]. TMS derivatives are produced by replacing

the active hydrogen atom of alcohols, acids, amines, and thiols

by a trimethylsilyl group. These derivatives are highly volatile

and thermally more stable than the parent compound, allowing

their analysis under GC-MS. Fragmentation of these derivatives

is also hugely structurally informative [5] [8].

The dataset is available in different formats, including .mgf,
which is a common format for spectrometry data. These .mgf
files contain precursor mass, charge, and m/z abundance pairs.

Additional metadata is available in Excel files. The dataset was

originally gathered as part of another study that aimed to fill the

gap in spectrographic data in the field of environmental science

and is publicly available [7].

There are a total of 3144 distinct spectra in the dataset, cover-

ing 106 unique compounds. There is also a larger private dataset,

but for reproducibility, the pipeline used only the public part of

the dataset [8]. Each compound in our dataset contained all the

required metadata information and was represented by approxi-

mately 30 independent spectra. The distribution of the number

of spectra per molecule is shown in the Figure 2 (mean 30, min 3,
max 60, std 6.85). On average molecules have 34.6 positive labels.
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Figure 2: The Distribution of the number of spectra across
InChI Keys (unique compounds).

2 PREPROCESSING
2.1 CG-MS Spectra
We used matchms package to refine the metadata and spectra

representations. The matchms package is a publicly available

Python package to import, process, clean, and compare mass

spectrometry data. It allows us to implement and run an easy-to-

follow, easy-to-reproduce workflow. There were two main phases

in the preprocessing workflow [4]:

• metadata enrichment and

• spectrum standardization.

In the metadata prepossessing phase, we extracted valuable

information like the InChI Key and molecule name from the

.mgf files, which often contained both pieces of data. We also

corrected InChI Key, InChI, and SMILES definitions and when

the necessary information wasn’t available, replaced it with a

common placeholder tag.

On the data side, our efforts included adding parent mass, nor-

malizing intensities, reducing the number of peaks to a range of

10 to 500, setting intensity thresholds between 0 and 1000, and

deriving losses. We also required that each GC-MS spectrum con-

tain not less than 10 peaks. These steps were crucial for getting

the CG-MS spectral data ready for analysis and for removing any

potentially corrupted spectra [4]. An example of the effects that

processing the mass spectra peaks can have is shown in Figure 3.
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Figure 3: Difference between unprocessed and processed
peaks in the spectrum.

2.2 Molecular fingerprints
Our pipeline enables the generation of common molecule fin-

gerprints, given the molecule’s InChI or InChI Keys by making

queries to public APIs. To accomplish this, we used the scyjava

package, which enables Java packages to be used in Python. This

is convenient since our entire workflow is built in Python and

we need to access the Chemistry Development Kit (CDK) written

in Java. Within this framework, we’ve implemented a subset of

molecular fingerprints which we tested in the study, that included

the following molecular fingerprints: [11]:

• AtomPairs2D,

• Circular,

• EState,

• Extended,

• KlekotaRoth,

• Lingo,

• MACCS,

• Pubchem,

For our sample study, we selected the MACCS molecular fin-

gerprint. This choice was made because it offers a relatively

straightforward approach, relying on SMARTS substructurematch-

ing [6]. SMARTS is a language that allows us to specify substruc-

tures using rules that are extensions of the Simplified molecular-

input line-entry system (SMILES). The Molecular fingerprint is

then defined by a set of these SMARTS patterns. MACCS uses

166 patterns [6].

Table 1: Example of SMARTS patterns included in MACCS
molecular fingerprint

SMARTS pattern Description

[R]1@*@*@1 3 ring

[#6]~[#16]~[#7] Carbon ~ Sulfur ~ Nitrogen

[#6]=[#6]~[#7] Carbon = Carbon ~ Nitrogen

[CH3]~*~[CH3] CH3 ~ any ~ CH3

a aromatic

~ represents any bond type.

= represents a double bond.

definitions from [10]

more detailed definition of the language is available at
https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html

2.3 Spec2Vec
Spec2Vec [3] is a spectral similarity score inspired by Word2Vec.

It works by converting mass spectrum peaks to "words" and then

uses the standard Word2Vec algorithm to learn the relationships

among them. It is an unsupervised algorithm so the evaluation

can be performed on the same data used to train Spec2Vec models.

There are large pretrained models which are publicly available,

but custom models can be quite inexpensive to train on local data.

The model was trained specifically for TMS derivatives from the

public dataset. The model produces 300 dimensional embeddings

and was evaluated on the entire dataset.

Spec2Vec embeddings outperform traditional methods of com-

paring spectra, such as cosine similarity, and even modified ver-

sions that consider data noise. These embeddings also exhibit

a much better correlation between high similarity scores and

high structural similarity [3]. However, the structure cannot be

directly derived from latent space embedding, which is why we

employ machine learning to learn these structural characteristics

[3].

https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
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Figure 4: Overview of the prediction pipeline

3 PIPELINE
Our main goal is to predict molecular fingerprints that represent

structural information based on the mass spectra embeddings

following the workflow diagram presented in 4. Spec2Vec pro-

vides embeddings in a latent space, where the cosine distance

between points corresponds to their structural similarity. The

molecular fingerprint generation task is framed as a multi-label

classification because each instance or example can exhibit mul-

tiple identifiable structural characteristics, and these correspond

to multiple different bits in the fingerprint. These structural com-

ponents have correlations among them, which is another reason

to treat the problem as multi-label classification rather than just

multi-class classification.

For the conversion of embeddings into molecular fingerprints

Spec2Vec embeddings, which consist of 300 real-valued attributes,

are used as input, while the targets of the prediction are N-bit

fingerprints (in this study N = 166, as we use MACCS molecular

fingerprints).

4 METHODS
Multi-label classification (MLC) can be approached inmany differ-

ent ways. The most straightforward approach involves treating

each label independently and training a separate binary classifier

for each label (Binary Relevance). Alternatively, we could treat

every unique combination of labels as a distinct class (Power Set).

However, given our 166 labels, the latter approach would create

a large number of classes, especially if we extend our research

to a broader range of molecules. We chose One Vs Rest classifier

(OVR) from sklearn, which works like Binary Relevance when

provided with an indicator matrix for the target (y) values. Bi-

nary Relevance trains a separate estimator for each of the target

indicator labels [1].

We need to choose an approach for classification since we

have reduced the MLC task into multiple binary classifications.

Random Forests are used due to their empirically proven high

accuracy [1], ability to handle imbalanced data, and good bias

variance trade-off. Other models, such as Decision Trees and

Logistic Regression were also quickly tested and proved worse

in preliminary testing with double 5-fold validation as shown in

the Table 2. Worse performance and efficiency of these models

are known from the literature [1].

We have also used a straightforward approach of calculating

Spec2Vec similarity [3] to predict the target molecular finger-

print. First, the Spec2Vec embedding is constructed for known

molecules and is stored along with their fingerprints. When pre-

dicting for a new molecule its Spec2Vec embedding is calculated.

Table 2: Initial Comparison of Internal Estimators

Logistic Re-

gression

Random

Forest

Decision

Tree

Hamming Loss 0.045 0.043 0.067

Weighted F1 Score 0.895 0.854 0.837

Label Ranking Loss 0.016 0.010 0.182

Coverage Error 54.601 42.964 151.832

The embedding of the new molecule is compared to known em-

beddings using built in function that calculates similarity score

based on cosine similarity. Voting for fingerprint labels is then

done proportionally based on similarity score. This approach,

which corresponds to the weighted nearest neighbor, is further

discussed in the section 5.

5 EVALUATION
We evaluated the learning methods using various metrics, with a

focus on the most informative ones, such as hamming loss, label

ranking loss, weighted F1 score, and coverage error [1], results

of these evaluations are shown in Table 3. To ensure robust eval-

uation, we employed a 5-fold cross-validation approach, which

we repeated twice to obtain reliable performance measurements.

Table 3: Random Forest performance metrics

Default

Classifier

Similarity

Voting

Random

Forest

Hamming Loss 0.083 0.038 0.043

Weighted F1 Score 0.635 0.642 0.854

Label Ranking Loss 0.630 0.083 0.010

Coverage Error 166.000 64.794 42.964

The Default Classifier always predicts the majority class for each

label.

Similarity Voting uses Spec2Vec similarity to proportionally vote

for labels. This approach is presented as a stronger baseline from

which we can measure improvements of our models.

Random Forests were trained for each label, using One Vs Rest

(OVR) method. Each forest had 100 estimators with balanced

class weights (inversely proportional). Impurity was measured

using Gini Impurity measure and no other restricting parameters

were set - the defaults of sklearn Random Forest Classifier apply.
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Figure 5: Models ability to generalize to unseen InChI Keys.

Our goal isn’t predicting fingerprints for known molecules,

but handling new ones effectively. To test this, we deliberately

removed some InChI Keys from our dataset. By doing this, we

checked howwell ourmodels perform in predicting the structures

of these unfamiliar molecules. This real-world scenario testing

helps us understand how practical and effective our approach is

when dealing with novel compounds not present in our initial

training data.

We have also performed 10-fold validation by removing 10

InChI Keys at a time from the training data. The model was

trained on the remaining ∼90 InChI Keys (∼2700 samples of mass

spectra) and evaluated on ∼10 unseen ones (∼300 samples of

mass spectra). The results are shown in Table 5. The Random

Forests’ ability to predict larger amounts of unseen InChI Keys

and effects of less training data and therefore less diverse em-

bedding knowledge is shown in Figure 5. Even though the label

ranking loss is increasing it is still well below the loss of the De-

fault Classifier and even Similarity Voting, when a large amount

of InChI Keys are missing and the training dataset is smaller.

Table 4: Similarity Voting on Unseen InChI Keys

Hamming

Loss

Weighted

F1 Score

Label

Ranking

Loss

Coverage

Error

average 0.047 0.639 0.084 75.153

Here only the average is shown to provide a reference point for

the quality of Random Forests. More data was not included to not

clutter the article. Unseen InChI Keys were simulated by keeping

only the test rows (unseen InChI Keys) and train columns (other

InChI Keys) in the similarity matrix.

Table 5: 10-fold evaluation results for unseen InChI Keys,
Results per Fold

Hamming

Loss

Weighted

F1 Score

Label

Ranking

Loss

Coverage

Error

0 0.068 0.749 0.043 63.432

1 0.064 0.806 0.039 85.369

2 0.061 0.775 0.045 94.405

3 0.066 0.757 0.031 70.266

4 0.060 0.759 0.033 79.687

5 0.101 0.676 0.066 97.522

6 0.124 0.596 0.077 115.793

7 0.036 0.864 0.019 63.857

8 0.047 0.818 0.017 64.828

9 0.077 0.721 0.063 84.503

average 0.070 0.752 0.043 81.966

6 REPRODUCIBILITY
The whole pipeline and evaluation were built with repeatabil-

ity in mind to allow for future studies, model comparisons, and

reevaluation of results. The dataset used is public, Spec2Vec mod-

els are built upon these data, and model training functions along

with parameters are available in the repository github.com/al-

pi314/mass_spectra tagged article. Training of the models is done

with fixed random seeds and stores models with training pa-

rameters, train and test data with the use of the pickle package.

Metrics and evaluations are always stored along with the models.

7 CONCLUSION
Our results demonstrate that Spec2Vec embeddings of TMS can ef-

fectively be converted into molecular fingerprints using machine

learning methods. These methods have proven to be reliable even

when predicting molecular structures for molecules that have

not been encountered before. This is significant because it allows

processing new MS spectra to uncover their most likely struc-

tural components, which we can then match against databases.

This structural information can be directly applied in various re-

search studies. Our plans for future work involve expanding this

approach to larger compound databases. Additionally, we plan to

broaden our research to predict more SMARTS patterns as part

of expanding our molecular fingerprint prediction capabilities.

While we’ll stay focused on fingerprints for database queries, we

will be also looking into predicting arbitrary SMARTS patterns.
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