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ABSTRACT 

This paper addresses predictions of city bus arrival time to bus 

stations on an example of a bigger EU city with more than 800 

buses. We use recent historic context of preceding buses from 

various routes to improve predictions as well as semantic context 

of bus position relative to the station. For evaluation of the results, 

we developed a live evaluation web application which can 

compare performance of different prediction systems with 

various approaches. This enables us to compare the proposed 

system and the system that is currently being used by the example 

city. The evaluation results show advantages of the proposed 

system and provide insights into various aspects of the system’s 

performance. 
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1 INTRODUCTION 

Improving the accuracy of expected arrival times of local 

transport can improve the experience of public transport users as 

well as allow for better planning of public transport. By using 

recent historic travel times of other buses and additional semantic 

context of the bus that is currently in the prediction process, we 

improve predictions of bus arrival times. These predictions are 

calculated in a live system and can be used in real-time to inform 

users of the public transport system as well as to help detect 

traffic congestions. 

The focus of this paper is on the architecture of the live travel 

time prediction system with which we continuously make 

predictions of bus arrival times as well as on our approach of 

evaluating the performance of the proposed system in 

comparison to the currently used system. 

We will first look into the problem setting and the type of data 

that is available for continuously making arrival time predictions. 

Then we will continue by describing our approach and the 

architecture of the continuous prediction system. Lastly, we will 

look into evaluation approaches that we have taken to compare 

the proposed system with an existing one. 

2 PROBLEM SETTING AND DATA 

The goal of the system is to predict arrival time to specific 

stations for each bus (more on this in [1][2][6]). To do this, we 

compute travel time predictions from specific stations to all 

remaining proceeding stations of the bus, per each bus. The data 

is suboptimal as we do not know the exact arrival or departure 

times to or from the stations (similar to [4]), which requires us to 

do extra processing on data and match bus positions to stations 

based on coordinates of bus locations and distances to nearby 

stations. 

To address the suboptimal detailedness of data, we deal with 

detecting vicinities of buses to their applicable stations. We are 

unaware whether the bus has stopped at a certain station or is just 

passing by, as this information is not available in the data. 

2.1 Bus Routes and Station Details 

We use some static data, which gives details about routes. For 

each bus station, we have a location (latitude and longitude 

coordinates), along with ID and station name. Bus route is 

defined with a route number, variation, and list of stations for 

each variation. 

This data is used to determine which stations a specific bus 

on a specific route variant might stop at or pass through. In a 

processed form, we use this data to determine which predictions 

we have to calculate when we get an updated bus status. We also 

use it to determine which sections of a specific route are shared 

with other routes.  

2.2 Bus Positions 

This is the main data that we use for computing predictions. Bus 

position data includes: bus ID, last stored location (latitude and 

longitude coordinates), and route number. 

This data is usually updated every minute but the update rate 

can vary significantly between buses and bus routes. 

Since we do not have information about exact arrival time to 

the station or departure time from a station, which would be 

preferable, we have to process bus positions to be able to use 

them as input for the prediction models. 

To use bus positions as input data, we match a position to the 

nearest bus station, based on available bus stations on a specific 

route. Bus position is only matched to a station if it is within a 

certain distance to the station. For best performance, we use a 

radius of 50m from the station’s position. 
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3 APPROACH DESCRIPTION 

Our system uses recent historic data of travel times to include 

information about recent traffic flow among features (see [7]). 

We make separate predictions for each of the proceeding stations 

that a specific bus can stop at on its route. 

 
Figure 1: Schematic of bus routes 

Let us say that bus A, for which we are making predictions, 

has departed station ‘i’ (latest station). To get recent historic data, 

we check which bus routes share paths between the latest station 

of the bus A and the target station ‘j’ for which we are making 

arrival time predictions. As we can see on Figure 1 above, 

Yellow route shares the path to target station ‘j’ with green and 

blue routes. Thus, we can use the latest travel times between 

stations ‘i’ and ‘j’ on yellow, blue and green routes, to get the 

most recent data about traffic flow on this path. 

Which is why we also consider data from other routes that 

share the bus path for which we are making predictions. This way 

we get a better recent historic context to have a more reliable 

information about current traffic dynamics. This is especially 

useful for routes that have less frequent buses (e.g. once every 30 

minutes or even less frequent). 

The diagram on Figure 2 shows components that are active in 

the real-time prediction system. We continuously fetch bus 

positions from Public transport API several times per minute. 

Bus positions are matched to stations based on geographical 

coordinates of the bus, active route of the bus and the direction 

of the route that the bus is taking. After filtering bus stations 

based on route and direction, we compute distance to each station 

using the Haversine formula [9]. If the distance to the closest 

station is less than 50 meters, we detect a vicinity of the bus to 

that station. Once we have a vicinity match to a bus station, we 

process and insert the data into a list of detected vicinities to 

stations. 

After each fetch routine, we store detected vicinities to 

stations to the data manager in the bus travel time predictor’s data 

manager component. For easier comprehension, we can say that 

detected vicinities to the stations can be viewed as detected 

arrivals of buses to the station. After the data fetch cycle is 

complete and updated arrivals of buses to stations are ready in 

the data manager of the bus travel time prediction component, 

the regression machine learning model is used to predict travel 

times for all buses that have a new detected vicinity to a station 

for all of their proceeding stations. 

At any given time, users can send a POST request to our 

proposed approach’s bus prediction server API to get predictions 

either for all buses, all routes, specific buses, or specific routes. 

The system returns predictions in a JSON object and provides 

users with the most updated predictions for each bus. 

 

3.1 Positional Semantic Context 

Since we have to match bus positions to stations and do not 

know when exactly a bus stopped, we use a positional semantic 

context of the bus. We determine whether we have detected the 

bus ahead of the station or after the station to further improve the 

accuracy of predictions. When the bus is detected ahead of the 

latest station we expect it to take longer time to reach the target 

station in comparison to when the bus is detected beyond the 

Figure 2: Architecture of the proposed solution 
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latest station. If the bus is detected beyond the latest station, it is 

likely that it will not stop at that station anymore.  

To detect the relative position of the bus to the latest station, 

we use coordinates from the first preceding station (i-1) and the 

first proceeding station (i+1) in addition to the coordinates of the 

latest station. 

3.2 Machine Learning Models 

To compute predictions of travel times, we use a regression 

machine learning model. We have trained and evaluated models 

based on several machine learning algorithms. These are: linear 

regression, SVM (SVR – Support Vector Regressor [3]), and an 

artificial neural network. We use implementations of these 

algorithms that are available in Scikit-learn [8], a Python library 

for machine learning. Models were trained on several weeks of 

data. 

For training the SVM (SVR) model we use the RBF (Radial 

Basis Function) kernel with the epsilon parameter equal to 10.3. 

The regularization parameter C is equal to 1.0. 

For training the neural network model we use the Multi-layer 

Perceptron regressor architecture [5] with 2 hidden layers (layer 

sizes: 15, 8). For solving the weight optimization, we use L-

BFGS, which is a Limited-memory approximation of Broyden–

Fletcher–Goldfarb–Shanno algorithm. Alpha hyperparameter is 

equal to 0.5, while learning rate is equal to 0.005. 

Models were trained on hundreds of thousands of data points 

collected over several months of data. 

SVM model is the best performing model of the tested ones 

which is why it is used as the part of our proposed approach in 

the following evaluation analyses. 

4 EVALUATION 

We mainly use two metrics to compare accuracies of predictions: 

MAE (Mean Absolute Error), and RMSE (Root Mean Squared 

Error). 

To get a better overview of the performance of the system as 

a whole, we developed a web application that serves for analysis 

of performance of the system. 

4.1 Live Evaluation System 

We continue with our web application that serves as an 

evaluation system. With this system we can evaluate 

performance of our new system in comparison to the currently 

used system for predicting arrival time of buses. Results of our 

new solution are in blue color, whereas the results of existing 

solution are in green color. This web application can also be used 

for various purposes of evaluation, for example to compare 

updated models with earlier versions or compare performance of 

models that are based on different algorithms. 

In all of the following figures, our system used the SVM 

(SVR) model to make predictions of bus travel times. The 

following figures were generated by evaluating predictions for a 

single route within a specific week. 

To start the evaluation with an initial context of main metrics, 

the proposed system has MAE equal to 120 seconds and RMSE 

equal to 11042 seconds. Whereas, the current system has MAE 

equal to 357 seconds and RMSE equal to 46618 seconds for the 

selected period on the selected route. Since it is likely that certain 

extreme values have affected these measurements, we will look 

into further analyses with which we can also get a more 

informative understanding of performance of both systems and 

how they compare to each other.  

 

 
Figure 3: Enriched screenshot of distribution of absolute 

errors 

On Figure 3 we can see how absolute errors are distributed 

among error bins. Each bin represents a 30 second interval of 

errors. The most left bin represents errors from 0 to excluding 30 

seconds, the second left bin represents errors from 30 to excl. 60 

seconds. We have to consider that there are more measurements 

present of the proposed system (blue bars) than of the current 

system (green bars). The reason for this is that we could not 

always get predictions from the current system for the same bus 

paths at the time of our predictions, meaning we could not 

compare predictions of the current system with predictions of the 

proposed system. The same applies to Figure 4 and Figure 5. 

Considering this, we can see that the proposed system has a 

larger share of predictions with errors under 60 seconds. The 

most common error bin of proposed system is 30+ (30 to excl. 

60 seconds), whereas for the current system it is the 60+ bin. 

 

 
Figure 4: Enriched screenshot of distribution of negative 

and positive errors 

On Figure 4 we can see how positive and negative errors are 

distributed between the proposed and the current prediction 

system. Errors are binned into bins of 30 seconds, except for the 
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most left and most right bins, which consist of all errors that have 

difference to actual time of more than -300 and 300, respectively. 

Notice that the orange vertical line emphasizes the 0+ bin of 

errors, which consists of predictions with errors between 0 and 

30 seconds. Equally well performing bin is the -30+ bin, which 

consists of errors between -30 seconds up to excluding 0. 

In this case a negative error means that we have predicted that 

the bus will arrive at the station sooner than it actually has. This 

evaluation approach gives us better information about whether a 

system is more likely to have negative or positive errors. In case 

of negative errors, the system undershoots with the predictions. 

Similarly, in case of positive errors, the system overshoots with 

the predictions. 

We can see that the proposed system is more likely to give 

predictions with negative errors, which means that the bus is 

more likely to arrive later than predicted. However, with the 

current system, predictions are more likely to have positive 

errors, meaning the bus is more likely to arrive earlier than 

predicted. Considering this, passengers are less likely to miss a 

bus if they plan their trip with the proposed system. 

 
Figure 5: Binned absolute prediction errors 

Upon discussion of acceptable prediction errors with the 

domain experts, they have determined that predictions with less 

than 90 seconds of absolute errors are the most desirable. 

Predictions that have absolute errors between 90 seconds and 4 

minutes are considered less desirable but still acceptable. 

Predictions with over 4 minutes of absolute error are considered 

unacceptable. We have binned predictions into these three bins 

to further compare performance between the systems. 

On Figure 5 we can see the comparison of distributions of 

predictions when taking opinions of domain experts into account. 

Blue parts of the bars represent the most desirable bins, orange 

parts present less desirable but still acceptable bins and grey parts 

represent unacceptable bins. 

We can see that in 66% of the cases, predictions of the 

proposed system are sorted into the most desirable bin, compared 

to 52% of the cases of the current system. The proposed system 

has significantly less acceptable but undesirable predictions: 

24% of selected predictions, in comparison to 40% of selected 

predictions of the current system. However, the current system 

does perform slightly better when focusing on the share of 

unacceptable predictions. 10% of predictions from the proposed 

system have unacceptably high errors, while 8% of predictions 

from the current system belong to the unacceptable bin. 

When considering all angles of analysis, we can determine 

that the proposed system generally performs better than the 

currently used system. 

5 CONCLUSION 

We have overviewed the approach that we take as the basis 

for our system for predicting travel and consequently arrival 

times of buses. We looked into the architecture we implemented 

to support our approach and continuous computation of 

predictions for arrival times of buses. We then followed with a 

more detailed description of our evaluation system with which 

we can more easily compare two prediction systems – either the 

proposed system with the current system or different versions of 

the proposed system. 

With the help of the evaluation application, we have also 

determined that the proposed system generally performs better 

than the currently used system. 

For further improvements of the system, we could include the 

Relative Mean Absolute Error (often known as MAPE – Mean 

Absolute Percentage Error) as a metric in the evaluation system. 

This metric would give us a better understanding of the size of 

an error, relative to the time taken for the bus to finish the path 

for which the prediction was computed. We could further 

improve the evaluation application by adding a feature for 

comparing the distributions of errors with normalized values in 

bins, instead of only absolute values. This would streamline the 

analysis when example numbers differ between both systems.  

We could also train additional machine learning models based 

on other algorithms, such as random forest and XGBoost, as well 

as include additional architectures of neural networks for a 

greater selection of models. We could then compare 

performances of all trained models with the use of our evaluation 

system. 
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