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Abstract
Various platforms, including patent systems and repositories like

GitHub and arXiv, support knowledge dissemination across do-

mains. As knowledge increasingly spans multiple disciplines,

there is a need to track innovations that intersect various fields.

Despite available data, a comprehensive knowledge taxonomy for

effectively tracking innovations across domains is lacking. Devel-

oping such a taxonomy and employing automated classification

methods will enhance the ability to track shared knowledge.

In this work, we first developed a knowledge taxonomy based

on the CPC schema. We formulated the classification of textual

data into defined knowledge fields as a multi-label problem. Then,

we evaluated the effectiveness of the classification models by

fine-tuning pre-trained transformer language models. The multi-

label framework enables the tracking of knowledge trends at the

intersection of various disciplines.
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1 Introduction
According to theWorld Intellectual PropertyOrganisation (WIPO),

a patent is an exclusive right granted for an invention, providing

legal protection to the inventor while simultaneously benefiting

society by making the invention publicly accessible
1
. Each year,

patent offices receive numerous patent applications that need to

be processed [13].To ensure the novelty of patent applications, in-

ventors should also be able to search existing patents. Organising

patents with unique codes in a hierarchical structure aids efficient

retrieval and aligns with natural human navigation, starting from

broad categories and narrowing down to specifics[21]. Among

these hierarchical structures, the CPC system is widely recog-

nised [6]. The CPC codes are organised as a taxonomy, meaning

that each entity in the lower level is the detail group of the parent.

A patent can be assigned to one or more labels by the experts

in patent offices [8, 18]. In the first level of the CPC hierarchy,

there are nine sections, which are divided into classes, subclasses,

groups, and subgroups. Each level of this hierarchy can have

several codes ending in approximately 250,000 classification la-

bels [11]. An example of the hierarchical structure of CPC code

is provided in Tab. 1.

The CPC schema’s top level has only nine sections, but the

number of groups increases substantially at lower levels. In this

1
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Table 1: Example of a sequence of codes across different
levels of the CPC hierarchy

CPC Code Title

Section H Electricity

Class H03 Electronic circuitry

Subclass H03C Modulation

Group H03C3/00 Angle modulation

Subgroup H03C3/005 Circuits for asymmetric modulation

study, we created a knowledge field taxonomy by merging CPC’s

detailed classes into a more abstract representation. This taxon-

omy not only serves as a framework for knowledge representa-

tion but also offers a benchmark for patent classification systems.

While some studies address the issue of numerous class labels by

excluding less-represented classes or truncating hierarchies [24],

a consistent benchmark taxonomy has been lacking. Since our

proposed knowledge taxonomy aligns with the CPC schema, it

is able to provide a benchmark for future studies, facilitating the

comparison of different models.

In summary, our paper’s contribution is the proposal of a

knowledge field taxonomy, KnowMap, which aligns with the

widely used CPC schema. The KnowMap merged several class

labels within the CPC schema based on the scope of the knowl-

edge field and the number of patents associated with each class.

The KnowMap taxonomy is available online
2
. In this study, we

also performed a classification task to categorise patents into the

fine-grained classes defined by our proposed taxonomy.

2 Related Work
Patent documents contain various types of information, including

text, diagrams, plots, and references to other patents or scientific

publications [20]. The textual content of a patent is divided into

several sections, such as the title, abstract, claim, and description

[11]. The title and abstract are shorter than the description but

still provide relevant information for classification. Li et al. [15]

evaluated various lengths of the abstract and title, finding that

using the first 100 words of title and abstract resulted in the best

classification performance in their study.

Various classification systems exist for organising patents [6].

In this work, we focus on the CPC schema. The hierarchical repre-

sentations help organise patents and facilitate efficient searching.

Kamateri et al. [11] discussed several potential challenges that

artificial intelligence technologies face in patent classification.

One such challenge is the extensive number of class labels. As an

example, the IPC contains approximately 86,000 classes, while

the CPC has around 250,000.

Patent classification is a multi-label classification problem

since every patent can belong to several knowledge fields [18,
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10]. Given the large number of classes at the lowest level of the

taxonomy tree, the performance of automatic models in predict-

ing such granular categories is limited. Various models have been

used to classify patents in a multi-label setting, ranging from clas-

sical machine learning models to deep learning models [15, 5,

8]. Several previous studies have focused on higher levels of the

hierarchy, limiting classification to broader categories such as

sections, classes, or subclasses within the taxonomy [3]. Bekamiri

et al. [3] fine-tuned the SBERT model to predict labels at the sub-

class level (i.e., 663 class labels) using a multi-label formulation.

They achieved F1-score of 66%, outperforming previous studies

that used the same datasets. Aroyehun et al. [1] similarly trun-

cated the IPC hierarchy at the subclass level and predicted these

labels by transferring knowledge from two higher levels (section

and class) to the lower level (subclass), achieving a precision

score of 0.53. While it remains valuable for patent office experts

to use an automatic model that can narrow down applications to

higher levels of the taxonomy tree, this approach has limitations

and challenges. One such challenge is that the choice of target

class labels does not depend on the scope of the knowledge area.

More established and expansive areas may benefit from directing

experts to detailed groups, while less developed areas may be

adequately served by broader classifications.

3 Methods and Materials
In this work, we developed a knowledge taxonomy and classi-

fied patents into fine-grained classes by fine-tuning pre-trained

models. Below, we outline the methods and materials used.

3.1 Patent Collection and Preprocessing
The dataset used in our experiments is the Google Patents Pub-

lic Datasets on BigQuery
3
. Each patent has several pieces of

information, including the publication number, application num-

ber, CPC code, title, abstract, and detailed description. We have

expanded the dataset to include the titles associated with each

CPC code from Espacenet.
4
. In this study, we focused on the tex-

tual data. We generated the input text by concatenating the title,

followed by the abstract, and then the description. We included

only those documents where the concatenated text is at least 100

words long. Previous studies have examined various lengths of

textual data and found that using the first 100 words often results

in higher performance for classification tasks [15].

To create a hierarchical structure where we have enough doc-

uments among leaf-node labels (i.e., avoiding scenarios where

one group contains only a few hundred documents while others

contain hundreds of thousands as an example), we needed to

count the number of documents which fall into the defined cate-

gories. As a preprocessing step before counting, we performed

de-duplication, which involved removing duplicate and near-

duplicate textual data [4, 12, 14].

Due to the large size of the dataset, we employed MinhHash

Locality Sensitive Hashing (LSH) as a deduplication method to

efficiently identify similar documents [7, 9, 22]. Specifically, we

used MinHash to approximate the Jaccard similarities between

sets of n-grams within the documents. MinHash is particularly

advantageous for large datasets because it supports parallel com-

putation, enhancing scalability [2].We set the similarity threshold

at 0.9, meaning that documents with a Jaccard similarity of 90%

3
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or higher were considered duplicates. To generate the hash sig-

natures in MinHash, we used 128 permutations. For the n-gram

representation, we used a range of 1 to 3, incorporating 1-grams,

2-grams, and 3-grams.

3.2 Refining Hierarchical Structure Through
Group Merging

The hierarchical structure of the CPC groups was refined at each

level of the tree. We started with nine sections at the top level (i.e.,

level 1), which were preserved. At subsequent levels (i.e., level 2 to
level 4), groups were merged by manual analysis based on shared

knowledge and the number of documents. Groups with relatively

few documents (i.e., groups with fewer than 40,000 for level 2,
20,000 for level 3, and 9,000 for level 4) were combined with other

groups at the same level that shared similar knowledge. As an ex-

ample, at the subclass level of the CPC hierarchy, "A01B" (i.e., Soil

working) and "A01C" (i.e., Planting, Sowing, Fertilising) represent

related steps in agricultural practices, as both are foundational

processes in land preparation and management. We merged them

into a single group labelled "Soil working and planting," resulting

in 162,567 patents in this category. The refinement continued

until the fine-grained classes contained at least 9,000 documents.

3.3 Text Classification
We formulated the classification problem as amulti-label problem,

in which each document can be assigned to multiple knowledge

fields. In this study, we aimed to classify the patents into the fine-

grained classes in the lowest level of the proposed taxonomy (i.e.,

83 classes). To balance performance and computational cost given

the large size of the dataset, We used the pre-trained language

models distilroberta-base, a distilled version of RoBERTa [16, 19],

and all-MiniLM-L6-v2, a version of MiniLM fine-tuned for seman-

tic similarity [22, 17]. The pre-trained models were fine-tuned

for the downstream task by adding a classification head. The

classification head takes the hidden state of the first token from

the model and processes it through a fully connected dense linear

layer, followed by a dropout layer for regularisation and a tanh

activation function for non-linearity. Since our task is multi-label

classification, the output logits for each class are converted into

probabilities using a sigmoid function.

For model training, we used a learning rate of 4e-5 with a

linear scheduler and a weight decay of 0.1. To prevent overfitting,

the best checkpoint was selected based on evaluation metrics

on the validation set. We trained the model for up to 5 epochs

with early stopping criteria based on validation accuracy. The

dataset, consisting of 1,092,991 samples randomly selected after

deduplication, was split into training, validation, and test sets

with ratios of 0.8, 0.1, and 0.1, respectively. To preserve the ratio

of samples per class in training, validation, and test sets, we used

stratified splitting
5
.

3.4 Classification Evaluation
The F1-score is a common metric for classification tasks. We

report both Micro-F1, averaged across all instances, and Macro-

F1, averaged across all classes.

4 Results and Analysis
In this section, the results are presented in two parts. First, we

present our proposed KnowMap taxonomy. Then, we report the

5
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performance of classifiers in categorising patents into the fine-

grained classes of this taxonomy.

4.1 The Proposed Knowledge Mapping
Taxonomy (KnowMap)

The taxonomy, along with the associated CPC sections, classes,

subclasses, groups, and subgroups are provided in the shared

online source. An example of detailing the knowledge field of

soil working and planting within the broader knowledge field of

human necessities is illustrated in Fig. 1.
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Figure 1: An example of a branch extension in KnowMap
from the root to the lowest level, showing the association
of KnowMap classes with corresponding CPC classes at
each level.

4.2 Classification Results
The classification task in this study was to classify patents into

83 fine-grained classes within our proposed KnowMap taxonomy.

The dataset comprised 1,092,991 documents, which were split

into the train, validation, and test sets with a ratio of 0.8, 0.1,

and 0.1 respectively. We preserved the ratio of samples per class

in all three sets with stratified splitting. The average number

of documents in the train set, validation set, and test sets are

presented in Tab. 2.

Table 2: Overview of sample metrics: total number of sam-
ples, average number of samples per class, and normalised
average number of samples per class across training, vali-
dation, and test sets.

Set Total Avg/ class Normalised Avg

Train 1,092,991 132,202 0.012

Val 874,372 16,476 0.012

Test 218,619 15,543 0.012

Table 3: Classification Results

Metric RoBERTa SBERT

Micro-F1 (Val) 0.76 0.76

Macro-F1 (Val) 0.86 0.86

Micro-F1 (Test) 0.77 0.76

Macro-F1 (Test) 0.90 0.90
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Figure 2: Normalised test size along with F1 Macro scores
for each class. The x-axis represents class indices. The y-
axis shows normalised values for test size and F1 Macro
scores (blue dots).

We demonstrated the experimental results on the two classifi-

cation models RoBERTa and SBERT in Tab. 3.

As observed from the results, theMacro-F1 score is higher than

the Micro-F1 score, which may indicate that the model performs

better for minority classes compared to majority classes. To gain

more insights into these results, we generated a plot (see Fig.2),

showing the F1 scores along with the normalised number of

documents for each class in the test set. We used normalised

values to allow both F1 scores and class sizes to be displayed in a

single figure, facilitating better comparison.

The plot shows that the Macro-F1 score is higher for minority

classes than for majority classes, also indicating that random

sampling led to an unbalanced dataset. The imbalanced sample

likely caused the higher Macro-F1 score relative to Micro-F1,

reflecting poorer performance in the majority classes. Future

work will focus on using balancing techniques when sampling

to address this issue and enhance model performance.

When looking more closely at the lowest F1-Macro scores, we

found that the bottom 10 classes were all leaves under the chem-
istry and metallurgy section. Moreover, the highest F1-Macro

scores (0.996) were achieved by the two classes in the textiles
and paper section, followed by all 17 leaves from the physics
section. We suspect this performance difference may be due to

greater variation in the textual data of chemistry and metallurgy
class compared to physics and textiles and paper, leading to more

variation between the training and test sets. Analysing this vari-

ation in detail remains a task for future work. Additionally, we

believe future work could benefit from adapting the classifier to

a hierarchical structure, prioritising correct predictions at higher
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levels before refining predictions at the leaf level. In our current

approach, the classifier does not account for the hierarchy and

predicts all leaves directly.

5 Discussion and Conclusions
In this work, we proposed a knowledge field taxonomy, KnowMap,

which aligns with the widely used CPC schema. The taxonomy

consists of 83 groups at the lowest level, with fine-grained classes

containing a minimum of 9,000 samples from the original Google

Patents Public Dataset after preprocessing. KnowMap serves as a

benchmark taxonomy, addressing a gap in the existing literature.

From the preprocessed original dataset, we randomly selected

1,093,151 samples to fine-tune pre-trained RoBERTa and SBERT

models for downstream tasks. However, the random sampling

resulted in an unbalanced dataset, which contributed to higher

Macro-F1 scores compared to Micro-F1 scores. To enhance clas-

sification results, we plan to create a balanced dataset from the

original data. Additionally, we aim to use larger models than

those used in this study to further improve the fine-tuning pro-

cess.

6 Future Work
Several knowledge platforms, such as news sites and GitHub,

host various types of information shared online. In future work,

we aim to incorporate these sources to extend and enhance the

knowledge taxonomy’s coverage. For example, the All Science

Journal Classification (ASJC), which organises research publica-

tions by subject area, can be used to identify alignments with

the existing taxonomy. This taxonomy alignment can then be

further analysed to determine whether to merge or split classes

at various levels. Beyond patents, we plan to evaluate the classi-

fier on other data, using domain adaptation methods to transfer

knowledge from the labelled patent domain to those with limited

or no labels. Large language models (LLMs) could further aid in

evaluating the classifier’s performance across different domains.

Recent research has shown the potential of LLMs to augment or

even replace human-labeled training data with labels generated

by these models [23].

Moreover, we plan to enhance the classification task by bal-

ancing the dataset using balancing techniques for multi-label

problems and leveraging larger pre-trained models. we will also

closely examine the different knowledge fields to better under-

stand the variations in classifier performance across them.
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