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Abstract
With the rapid expansion of the computing industry, efficient

energy utilization and reduction of CO2 emissions are critically

important. This research develops analytical tools to predict CO2

emissions from various machine learning processes. We present a

novel methodology for data acquisition and analysis of CO2 emis-

sions during model training and testing. Our results demonstrate

the environmental impact of different algorithms and provide

insights into optimizing energy consumption in artificial intelli-

gence applications.
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1 Introduction
The global computing industry significantly contributes to CO2

emissions, with data centers accounting for 2.5 to 3.7 percent

of global greenhouse gas emissions [1]. These emissions exceed

those of the aviation industry due to continuous operations and

heavy reliance on fossil fuels [11]. Given the growing demand for

artificial intelligence (AI) applications, there is an urgent need

for CO2-conscious solutions.

This research aims to develop tools for predicting CO2 emis-

sions associated with machine learning processes, thus enabling

the reduction of the environmental impact of AI models. In col-

laboration with Eviden (Spain) and under the FAME EU project,

we have developed a CO2 emissions analysis system using tools

like CodeCarbon [2] and eco2AI [3].

1.1 Research Goals
The primary goal of this research is to develop a service that pre-

dicts CO2 emissions and power consumption of different machine

learning models during both training and evaluation phases with

emphasis on hyperparameter dependency. The CO2 emissions

are measured in kilograms per second (
𝑘𝑔
𝑠 ) , while the power

consumption is measured in kilowatt-hours (kWh).

While existing services, such as CodeCarbon [2] or eco2AI

[3], provide real-time measurement of emissions, they do not
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offer insights into a model’s emissions before its construction or

use. The service we aim to provide addresses this gap by offering

an estimation of emissions and power consumption for differ-

ent models before they are selected for specific use cases. This

forward-looking approach allows for more informed decisions

when choosing models, potentially reducing their environmental

footprint.

2 Related Work
The environmental impact of machine learning models has been

a growing concern in recent years. Several studies have focused

on quantifying and reducing the carbon footprint of artificial

intelligence (AI) processes. For instance, [12] highlighted the en-

ergy consumption of training large neural models and suggested

methods for minimizing emissions. Similarly, tools like CodeCar-

bon [2] and eco2AI [3] have emerged to measure real-time CO2

emissions from computational tasks. However, these tools often

lack predictive capabilities for assessing emissions before model

selection, as pointed out by. Our work builds on these existing

methodologies, concretely on thework of eco2AI[3], by providing

a forward-looking approach that estimates emissions during the

model selection phase, thus complementing real-time monitoring

tools. This is achieved through heavy dependency on eco2AI[3]

measuring systems for data collection, later used for modeling

based on the collected data and registered hyperparameters.

2.1 Research Gap and Contribution
Despite the growing availability of tools like CodeCarbon [2]

and eco2AI [3], a significant gap remains in the preemptive eval-

uation of environmental impact during the machine learning

(ML) model selection phase. The mentioned tools are valuable for

post hoc analyses but do not assist ML practitioners in making

informed decisions upfront—before model development—on

the environmental footprint of different model architectures or

hyperparameters.

This gap is crucial, as the model selection phase often involves

trial-and-error across multiple models and configurations, po-

tentially leading to unnecessary resource consumption. Without

predictive capabilities, practitioners have limited insight into

which models will have the lowest environmental impact before

engaging in resource-intensive training.

Our research aims to fill this gap by introducing a predictive
service that estimates the environmental footprint of different

ML models before they are trained or used. This service leverages

the data collected from existing tools like eco2AI [3], incorporat-

ing key features such as hyperparameters, and model architec-

turre into predictive models. By doing so, we enable developers

https://doi.org/10.70314/is.2024.sikdd.23
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to makemore sustainable choices at the model selection stage,

reducing carbon emissions from the start of the ML lifecycle.

The table 1 below presents a feature matrix comparing our

proposed service with current tools, showing how our approach

addresses unmet needs:

3 Methodology
Due to the lack of suitable data on CO2 emissions of machine

learning models, we began by developing an infrastructure for

data collection. This infrastructure is composed of the following

steps:

• Dataset Generation: Creating synthetic datasets using
random data generation methods.

• Data Preprocessing: Cleaning and preparing the data for
analysis.

• CO2 Emission Measurement: Recording CO2 emissions

during both training and testing phases using different

machine learning algorithms.

• Feature Extraction: Extracting relevant features such

as project ID, experiment details, epoch duration, power

consumption, and hardware configurations.

• Adding Hyperparameters to Final Dataset: Document-

ing hyperparameters used in each experiment to assess

their impact on emissions.

• Containerization: Utilizing Docker for containerization

to ensure reproducibility and scalability of the experi-

ments.

• Data Storage: Storing all datasets, features, and emission

records systematically in a database for further analysis.

• Modeling: Developing and training machine learning

models to predict CO2 emissions and power consumption.

The software implementation uses Python, with dependencies

including pandas [7], scikit-learn [10], matplotlib [5], eco2AI [3],

TensorFlow [abadi2016tensorflow], Keras [chollet2015keras],
and Docker for containerization [merkel2014docker].

3.1 Dataset Generation
In this step, we created a synthetic dataset by generating random

data points using tools like sklearn.datasets.make_regression
or make_classification. The primary objective here is not

to reflect real-world data scenarios but to produce a controlled

environment where the focus is on measuring CO2 emissions

and power consumption during model training and evaluation.

Datasets generated vary in size from ranges of 250 to 15000 sam-

ples and 5 to 2000 features. In classification cases additionally the

number of classes ranges from 2 to 50. These parameter ranges

were selected to mitigate the risk of computational overload, en-

suring that the experiments remain feasible within the available

computational resources while maintaining the integrity of the

analysis.

3.2 Data Preprocessing
Before analysis, the dataset must be cleaned and prepared. This

includes handling missing values, normalizing or standardizing

data, encoding categorical variables, and splitting the data into

training and testing sets. Proper preprocessing ensures that the

data is in the optimal format for the models to learn from andmin-

imizes biases that may affect model performance and emission

measurements.

3.3 CO2 Emission Measurement
We measure CO2 emissions produced during both the training

and testing phases of the machine learning models. This involves

using tools like eco2AI [3] to track energy consumption and

convert it into equivalent CO2 emissions. The measurements

are taken for various models, such as Decision Trees, Random

Forests, Logistic Regression, and Neural Networks, to assess their

environmental impact under different computational loads.

3.4 Feature Extraction
To gain deeper insights, we extract various features that could im-

pact CO2 emissions and energy consumption. These features in-

clude project identifiers, detailed descriptions of each experiment,

the duration of each training epoch, power consumption metrics,

hardware configurations (such as the type of CPU/GPU used), and

hyperparameters. The project identifiers refer to unique alphanu-

meric codes assigned to each machine learning experiment upon

execution. These identifiers help differentiate between various

model configurations and experimental setups. They are gener-

ated and stored automatically by our system during the dataset

generation process to ensure traceability and reproducibility of

the experiments.

3.5 Adding Hyperparameters to Final Dataset
We document the hyperparameters used in each machine learn-

ing experiment, such as learning rates, batch sizes, and the num-

ber of layers in neural networks. This allows us to evaluate how

these hyperparameters influence CO2 emissions and energy con-

sumption.

3.6 Containerization
To ensure reproducibility and scalability of our experiments, we

employ Docker for containerization. This approach encapsulates

the code, dependencies, and environment settings, allowing the

experiments to be easily replicated and deployed across different

platforms.

3.7 Data Storage
All datasets, extracted features, hyperparameter configurations,

and CO2 emission records are systematically stored in a database.

This central repository facilitates efficient querying, retrieval,

and analysis of data to support ongoing and future research.

3.8 Modeling
In this step, we develop and train machine learning models to

predict CO2 emissions and power consumption based on various

features, such as the type of algorithm used, hardware configura-

tion, and model parameters. This modeling allows us to estimate

emissions for different machine learning workflows before their

actual deployment. The models help identify the most efficient

algorithms and configurations, thus guiding the selection of en-

vironmentally friendly AI solutions.

The general pipeline for the previously mentioned steps can

be seen below (see Figure 1).

A more thorough view of the workings of this can be seen as

shown below for running a single measurement (see Figure 2).

4 Model Architecture
In this section, we explain the architecture of the model used

for predicting CO2 emissions and power consumption based on
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Tool/TechnologyPlatform
Compati-
bility

Model Cov-
erage

Metric
Granular-
ity

Carbon
Metrics

Energy
Metrics

Additional
Features

Real-time
measure-
ment

Forward-
looking
Prediction

CodeCarbon Cloud, On-

Premise

All ML mod-

els

Per training

session

CO2 emis-

sions (kg)

Energy con-

sumption

(kWh)

Dashboard

Visualiza-

tion

Yes No

eco2AI Cloud, On-

Premise

All ML mod-

els

Per training

session

CO2 emis-

sions (kg)

Energy con-

sumption

(kWh)

Not RAPL

based

Yes No

Proposed
Service

On-Premise Specific

models

(mentioned

bellow)

Per model,

per selec-

tion phase

CO2 emis-

sions
kg

s

Energy con-

sumption

(kWh)

Predictive

modeling

No Yes

Table 1: Feature comparison of existing tools and the proposed service

Figure 1: General Measurement Pipeline

Figure 2: Single Model Measurement Pipeline

various features such as CPU type, GPU type, region, and other

experiment-specific details. The model implementation is en-

capsulated within a Python class named MultiModel, which is

responsible for managing the entire process from data prepro-

cessing to training and prediction.

The model employs two separate neural networks for predict-

ing CO2 emissions and power consumption. The architecture for

each neural network is as follows:

• Input Layer: Receives the scaled and encoded features.

• Hidden Layers: Consist of multiple Dense layers with

ReLU activation functions. The CO2 emissions model in-

cludes three hidden layers with 128, 64, and 128 neurons,

respectively, while the power consumption model has

three hidden layers with 64, 64, and 128 neurons.

• Output Layer: A single neuron that outputs the predicted

value for either CO2 emissions or power consumption.

4.1 Model Training
The model is compiled using the Adam optimizer [6] and the

Mean Squared Error (MSE) loss function. Seeing as we were un-

able to gather adequate real-time environmental data of factors

that may influence our predictions (e.g. Distribution of energy

sources, real time CO2 per kWh), our model relies on static yearly

averages of these values[8] [9] . Our model uses the aforemen-

tioned features for the purpose of regression with the goal of

predicting power consumption and CO2 emissions gathered by

previously mentioned random tests. Each model is trained for 25

epochs using the preprocessed data. After training, the models,

along with their respective scalers and encoders, are saved to

disk for later use.

4.2 Prediction
Once trained, the model can predict CO2 emissions and power

consumption for new data points by loading the appropriate

model, scaler, and one-hot encoder. The input data is prepro-

cessed in the same manner as during training, and the predictions

are obtained by applying the trained models.

This modular approach allows for easy extension to additional

models or data sources and provides a scalable solution for ana-

lyzing the environmental impact of machine learning processes.

5 Web Application Interface for CO2
Emissions and Power Consumption
Prediction

In addition to the backend model developed for predicting CO2

emissions and power consumption of various AI models, a web

application was created to provide a user-friendly interface for

real-time predictions. The web app, as shown in Figure 3, allows

users to select different machine learning models and configure

parameters to estimate the associated environmental impacts.

5.1 Key Features of the Web Application
The web application interface is designed with simplicity and

functionality in mind. It includes several key components:

• Model Selection: Users can choose the type of machine

learning model they are interested in evaluating (e.g., Lo-

gistic Regression ( abbr. LogR ), Decision Tree Classifier (

abbr. DTC ), Decision Tree Regression ( abbr. DTR ), Neural



Information Society 2024, 7–11 October 2024, Ljubljana, Slovenia Hrib et al.

Figure 3: Web App Interface

Network Classifier ( abbr. NNC ), Neural Network Regres-

sion (abbr. NNR ), Linear Regression ( abbr. LinR ), Random

Forest Classifier ( abbr. RFC ) and Random Forest Regres-

sion ( abbr. RFR ) ). The dropdown menu in the upper-left

corner of the interface provides a list of available models.

• Model Parameters Configuration: A section labeled

"Model Parameters" allows users to specify various inputs:

– Train or Evaluate: Users can choose whether to esti-

mate emissions for the training or evaluation phase of

the model.

– Dataset Samples and Features: Input fields are pro-
vided for users to define the size of the dataset in terms

of the number of samples and features.

– CPU and GPU Specifications: The app allows the

selection of the CPU and GPU type, reflecting differ-

ent hardware configurations, such as "Intel(R) Xeon(R)

Gold 6246R CPU @ 3.40GHz/1 device(s), TDP:205.0" or

"AMD Ryzen 7 4800H with Radeon Graphics/1 device(s),

TDP:45.0".

– Region/Country Selection: A dropdown to select the

geographic location where the model is being executed,

which influences the CO2 emissions based on local en-

ergy sources.

• Real-Time Predictions: Once all parameters are config-

ured, the application dynamically calculates and displays:

– CO2 Emissions: The predicted emissions are shown in

kilograms per second (kg/s).

– Power Consumption: The power consumption is pro-

vided in kilowatt-hours (kWh).

• Electricity Source Distribution: A graphical representa-

tion is provided for the distribution of electricity sources,

such as coal, gas, and oil, in the selected region. This in-

formation is crucial for understanding the environmental

impact of power consumption based on the local energy

mix.

5.2 User Experience and Accessibility
The web application is developed with accessibility in mind, en-

suring that users, regardless of technical background, can interact

with the model’s predictive capabilities. By offering a clear and

intuitive interface, it aims to make the process of estimating CO2

emissions and power consumption transparent and straightfor-

ward.

Figure 3 illustrates the application’s main screen, where the

model type, parameters, and results are all visible at a glance. This

real-time feedback loop allows users to make informed decisions

based on the predicted environmental impact.

6 Results
6.1 Model Error
To evaluate the performance and accuracy of the models, we

conducted a 10-fold cross-validation to estimate the errors in

predicting CO2 emissions and power consumption. The results

are presented in Table 2. The errors for both CO2 emissions

and power consumption were computed for both training and

evaluation phases of each model type.

Note: In this context, "Train." refers not to the error on the

training set, but rather to the error made by our model in predict-

ing the CO2 emissions / Power Consumption during the training

phase of the listed model. Similarly, "Eval." refers not to the error

on the evaluation set, but rather to the error made by our model

in predicting the CO2 emissions / Power Consumption when

the listed model makes predictions. This distinction is crucial to

understanding the results accurately.

Table 2: Model Scaled Error Estimates from 10-Fold Cross-
Validation

Model Phase CO2 Error Power Er-
ror

DTC Eval. 0.0036 0.0043

DTC Train. 0.0631 0.0649

DTR Eval. 0.0032 0.0034

DTR Train. 0.0133 0.0517

RFC Eval. 0.0094 0.0098

RFC Train. 0.3242 0.3582

RFR Eval. 0.0087 0.0081

RFR Train. 0.2565 0.2779

LogR Eval. 0.0063 0.0057

LogR Train. 0.0055 0.0043

LinR Eval. 0.0099 0.0105

LinR Train. 0.0104 0.0095

NNC Eval. 0.0018 0.0030

NNC Train. 0.1083 0.1216

NNR Eval. 0.0045 0.0112

NNR Train. 0.1051 0.1008

Based on the results obtained through the 10-fold cross-validation,

it is evident that the model performance varies significantly

across different algorithms and phases. One notable observa-

tion is that the errors in predicting CO2 emissions and power

consumption are relatively higher during the training phases,

particularly for more complex models like Neural Networks and

Random Forests [4].

This discrepancy in model performance can be attributed to

the sparsity of the data collected during the measurement phase.

The limited data points lead to substantial gaps in the attribute

space covered by the models, resulting in erratic behavior when

predicting outside these ranges. Consequently, the models show

diminished accuracy and reliability when confronted with input

configurations that fall beyond the scope of the original data.

Future research should focus on enhancing the robustness of

these models by expanding the dataset to include a broader range

of scenarios and conditions. This would help mitigate the effects

of sparsity and improve the model’s generalizability, ensuring

more reliable predictions across diverse settings.
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Figure 4: Logarithmically scaled mean emissions across
different models

6.2 CO2 Emission Analysis Across Different
Models

Figure 4 provides a comparative analysis of the mean CO2 emis-

sions generated by different machine learning models during

their operation, represented on a logarithmic scale to accommo-

date the wide range of emission values.

The chart highlights significant variations in CO2 emissions

among models, with the Neural Network Classifier and Neu-

ral Network Regressor exhibiting the highest emissions by a

considerable margin. This is expected due to the intensive com-

putational requirements and numerous parameters these models

necessitate, resulting in elevated power consumption and conse-

quently higher CO2 output.

In contrast, simpler models like Logistic Regression, Linear

Regression, and Decision Tree models show substantially lower

CO2 emissions, reflecting their reduced computational complex-

ity and lower resource demand.

Interestingly, the Random Forest models, particularly the Re-

gressor, present moderate emissions, illustrating that even ensem-

ble methods, which typically involve training multiple decision

trees, can maintain reasonable emission levels depending on their

configuration.

This analysis underscores the importance of model selection

not only for performance but also for minimizing environmental

impact, particularly when scaling up operations or deploying in

resource-constrained settings.

7 Discussion
The results highlight the significant environmental impact of

training complex AI models, particularly neural networks. The

variability in emissions suggests that optimizing model hyperpa-

rameters and selecting appropriate hardware configurations can

reduce CO2 output.

Future research should focus on model improvement for better

and more accurate prediction, expanding the range of algorithms

studied, as well as intensive data collection to accommodate gaps

in training data.

8 Limitations
This study presents several limitations, particularly regarding

the data, model evaluation, and hardware configurations, which

must be considered when interpreting the results.

8.1 Training Duration and Model Learning
The models were trained for a fixed number of epochs (e.g., 10 or

20), prioritizing computational cost over learning performance.

The focus was on estimating CO2 emissions rather than model

accuracy or convergence, meaning the models may not have fully

captured patterns in the data. As such, the reported emissions

reflect standardized training durations (with an upper limit for

computational efficiency), not optimized learning outcomes.

8.2 Lack of Meaningful Learning Objective
The use of randomly generated data limits the evaluation ofmodel

learning. Since the data lacked inherent structure, the models’

ability to learn was not assessed. Instead, the models were pri-

marily evaluated on their resource consumption during training,

reducing the focus on generalization or predictive power.

8.3 Hardware and Software Considerations
The experimentswere conducted on specific hardware (e.g., GPU/CPU

configurations), and variations in hardware were not examined.

Different hardware setups, especially energy-efficient systems,

could significantly impact CO2 emissions and energy consump-

tion. Therefore, the findings may not generalize across all hard-

ware environments. However, we would like to point out that this

was due to lack of infrastructure for broader experimentation.

9 Future Work
Future research should incorporate real-world datasets, optimize

hyperparameters, and evaluate diverse hardware configurations

to extend these findings to broader machine learning scenarios.

The exploration of more complex architectures and learning

objectives will provide a deeper understanding of the trade-offs

between performance and environmental impact.

10 Conclusion
Our study presents a methodology for monitoring and analyzing

CO2 emissions during machine learning processes. The find-

ings demonstrate that different machine learning models exhibit

significant variability in their energy consumption and CO2 emis-

sions, with complex models like neural networks having a higher

environmental impact. By providing predictive insights into these

emissions, our approach enables more informed decision-making

during model selection, thus contributing to the broader goal of

reducing the carbon footprint of AI applications.

Future work will focus on expanding the dataset to include

more diverse models and configurations. Additionally, we plan

to integrate real-time monitoring tools to compare predictions

with actual emissions, further refining our predictive capabilities.

Moreover, optimizing model hyperparameters and exploring al-

ternative, more sustainable hardware configurations will be key

areas of investigation for minimizing the environmental impact

of machine learning workflows.
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