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ABSTRACT
When building a causal graph from textual sources, such as media
reports, a key task is to provide an accurate semantic understand-
ing of the causal variables encoded as nodes and to link them
to existing ontologies with at least two purposes: (i) expand the
knowledge with the domain knowledge captured in such ontolo-
gies and (ii) provide accurate and different levels of abstraction
of the extracted causal variables. This article describes how we
used OntoGPT, a tool for matching raw text to ontology concepts
initially designed for the medical domain, to match concepts from
media events to relevant ontologies. We build upon our previous
work on extracting causal variables and enrich the extraction
pipeline by matching causal variables to concepts from specific
domain ontologies. In particular, we describe our work regard-
ing the GEO ontology. Future work will focus on expanding
OntoGPT’s capabilities by utilizing a wider selection of ontolo-
gies. Addressing its limitations, such as dealing with multiple
instances of the same class, will also be crucial for improving its
utility. These improvements will allow the tool to better support
strategic foresight applications by providing more detailed in-
sights across a multitude of different sectors, further enriching
causal graphs and facilitating more accurate predictive modeling.
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1 INTRODUCTION
Strategic foresight is a discipline concerned with anticipating
future trends, uncertainties, and disruptions to inform decision-
making and enable the creation of resilient, long-term strategies.
As such, it is valuable to governments, organizations, and enter-
prises, who can use it to remain competitive and adaptable in a
rapidly changing world [4].

The pace of technological advancement, shifting geopoliti-
cal landscapes, environmental crises, and unpredictable market
trends make it essential to react quickly to change. Traditionally,
foresight has been based on trend analysis, expert opinion, and
qualitative insights. Such approaches lack the agility required to
scan real-world events in near-real time and produce strategic
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foresight outcomes at such a pace. Nevertheless, this would be
possible with the use of artificial intelligence.

AI enhances strategic foresight by automating the analysis of
data and detecting patterns that may go unnoticed by human
experts [1]. Machine learning algorithms can continuously mon-
itor emerging trends, geopolitical shifts, and market fluctuations
in near-real time, offering dynamic insights into potential future
scenarios. Natural language processing (NLP) enables AI to sift
through massive amounts of text, extracting relevant informa-
tion from reports, news, and social media, thus accelerating the
forecasting process. By integrating AI into strategic foresight,
organizations can adapt more swiftly and make more informed,
data-driven decisions in the face of uncertainty.

Ontologies provide structured knowledge informing the rela-
tionships between concepts within a specific domain. Further-
more, they describe those concepts through properties and can
link such classes to specific instances observed in the real world.
As such, they are of key importance when building a causality
graph, given they can augment our understanding of the causal
relationships between variables with a better understanding of
the context and the variable implications [3]. For example, if
the causal relationship reports about the ceasing of an armed
conflict, knowing whether a causal variable relates to a coun-
try, the location of that country, the neighboring countries, and
international organizations it is involved in would help to un-
derstand the magnitude of that event and contextualize other
likely outcomes (refugee repatriation, impacts on investments,
and others).

In the scope of the graph massive project, ontology matching
is being used to link the extracted causal relationships from text
to concepts inside the ontologies, allowing for a more detailed
understanding of the concepts that appear in causal relationships
and their interconnectivity.

2 ENRICHING CAUSAL GRAPHS WITH
DOMAIN KNOWLEDGE

We consider ontologies a framework (an organized and structured
system for representing knowledge) used to represent knowl-
edge within a specific domain by defining the relationships be-
tween concepts. They consist of classes (concepts), properties
(attributes), and relationships that connect different concepts.
This structure provides a standardized way to organize and in-
terpret data, ensuring consistent understanding across systems.
For example, in a medical ontology, concepts like "disease" might
be linked to "symptoms," "treatments," and "causes," each with
its own defined properties. By formalizing these relationships,
ontologies allow AI systems to better interpret and reason about
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complex information, leading to more accurate data processing
and decision-making.

Ontologies enhance causality graphs by providing domain-
specific knowledge that improves the accuracy and depth of
relationships represented. When extracting causal relationships
from large datasets, such as media reports, the data can often be
ambiguous or incomplete. Ontologies address this by offering
structured knowledge that defines concepts and their relation-
ships within a specific domain, linking extracted causal rela-
tionships to well-defined entities in the ontology. This enriches
the causality graph, uncovering implicit connections and non-
obvious relationships that may otherwise be missed. In strategic
foresight, for example, ontology-based enrichment helps capture
a broader range of potential future scenarios by incorporating
knowledge beyond the immediate dataset. This leads to more
reliable predictions, especially when the training data is limited
or domain-specific. Ultimately, ontologies are expected to enable
the system to generalize better, predict outcomes with higher
accuracy, and improve the overall reliability of causality graphs.

The causality graph pipeline in the Graph Massivizer strategic
foresight project is designed to automate the extraction, organi-
zation, and analysis of causal relationships from large datasets,
particularly news articles. The Figure 1 showcases the structure
of our causality graph’s data pipeline. The process begins with
extracting these relationships from news articles, which are then
organized into a causality graph that maps the interactions be-
tween various factors and events. The goal is to develop link
prediction models that estimate the likelihood of future events
based on observed patterns. For instance, one use case involves
predicting oil price trends by analyzing factors that influence
pricing.

Ontology matching is then integrated into the pipeline to link
extracted causal relationships with concepts from structured on-
tologies. This enrichment adds layers of context and enables the
discovery of connections that may not be evident from raw data
alone. By incorporating ontologies, the pipeline transcends the
limitations of its training data, identifying causal relationships
that may be implied by broader knowledge contained in the on-
tologies. This not only enhances the accuracy of the graph but
also allows it to capture more complex and non-direct relation-
ships, improving its predictive capabilities.

As shown in Fig. 1B, the process of ontology linking in our
pipeline consisted of creating ontology matching templates, then
linking the concepts in text to ontologies, using the information
to add additional data to existing causalities, all with the purpose
of finding extra implicit connections based on the information
provided by the ontologies.

The main problem that needed solving for that purpose was,
how to link ontologies to raw text data. In our case that was
done using OntoGPT [2], which is a tool used for ontology link-
ing. Another key challenge is inter-ontology matching, which
involves linking multiple ontologies through shared concepts.
This process expands the knowledge framework, making it even
more valuable for our purposes. The challenge of inter-ontology
matching hasn’t been addressed yet and remains a matter of
future work.

3 ONTOGPT: A BRIEF OVERVIEW
OntoGPT is an advanced tool that integrates large language
models (LLMs) with ontologies to improve knowledge extraction
and organization across various domains. Ontologies provide a

Figure 1: The figure showcases our pipeline for building
a causality graph. The sub-figure B showcases how the
process of ontology linking was executed as a part of our
pipeline

consistent and accurate representation of complex information
by defining structured relationships between concepts.

The primary purpose of OntoGPT is to enhance AI systems’
understanding, processing, and categorization of data by linking
extracted information to predefined concepts and relationships
within an ontology. This structured approach ensures greater
accuracy and reliability compared to traditional AI systems that
rely on unstructured data.

OntoGPT works by connecting data from sources such as text
or reports to specific concepts in an ontology, allowing for more
informed and contextually accurate connections. For example, in
healthcare, OntoGPT can link symptoms from patient records to
diseases and treatments outlined in medical ontologies, helping
to suggest possible diagnoses or treatment plans.

By combining the language-processing capabilities of LLMs
with the structured knowledge available in ontologies, OntoGPT
enables AI systems to go beyond keyword matching and consider
the relationships between terms. This leads to more intelligent
data interpretation and improved decision-making.

OntoGPT is widely used in fields where structured knowl-
edge is critical for high accuracy, such as healthcare, biology,
and pharmaceutical research. In medical research, for instance,
OntoGPT links clinical trial data, medical records, and scientific
literature to medical ontologies, supporting better analysis and
decision-making.

The key advantage of OntoGPT lies in its ability to ground
AI outputs in domain-specific, structured knowledge, reducing
the likelihood of errors and improving the relevance of insights.
This grounding ensures that AI responses are not just based on
patterns but also on well-defined concepts and their relationships.

In summary, OntoGPT bridges the gap between the raw data-
processing power of LLMs and the structured knowledge in on-
tologies. By leveraging both, it provides a more accurate and
reliable approach to extracting and linking data across various do-
mains, particularly when working with large, complex datasets.

3.1 OntoGPT’s role
At a lower level, OntoGPT operates using YAML templates that
define how data should be extracted from text and linked to onto-
logical concepts. These templates serve as blueprints, specifying
which types of entities, relationships, and properties to look for
in the input text. The templates guide the large language model
by mapping textual data to predefined concepts and relationships
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Figure 2: A Showcase of the function of OntoGPT

Figure 3: The Process of Templates Generation

from the ontology, ensuring that the extracted information is
both relevant and structured. The figure 2 shows the process
of ontology linking for an example of a simple sentence. Each
YAML template contains detailed instructions on how to identify
key terms, their corresponding ontology classes, and the relation-
ships between them. This allows OntoGPT to recognize when a
piece of text, such as a sentence from a media article, contains
a concept that aligns with an entity or event in the ontology.
Once identified, the tool links the extracted data to these ontol-
ogy entries, enabling richer and more meaningful connections
in the data, as it is now grounded in an established knowledge
framework.

The approach described in this article uses an ontology file
as input to create such templates for data extraction and link-
ing. This enables for a broader range of ontology linking, as the
templates can be created on demand.

4 TEMPLATES AND PYTHON CODE
GENERATION

The approach works by using the information defined inside
the ontology, to generate the YAML templates. The Figure 3
showcases the process of how this is done.

First the class information, for each class inside the ontology,
is extracted. This is done by using the "owlready2" python library
to parse the ontology into an object, and then extract the relevant
information from the new object.

Every class inside the ontology is used to create a correspond-
ing template class, which is optimal, as it covers all parts of the
ontology that could potentially be linked. A small portion of
the data extraction process is ontology-specific and was custom-
tailored to the individual ontology, as some information (like
class descriptions) is saved in different parts.

Secondly the data extracted from the ontology is processed
and used to create custom YAML templates. This is done by sim-
ply using the extracted information to fill in a "general template"
we used for generation. Specifically the class names and descrip-
tions are used, to do so. This gives OntoGPT the names of the

classes inside the ontology, that we are trying to link the text data
to, and their descriptions, which assists OntoGPT in more accu-
rately identifying these classes inside the text. The YAML file also
contains the information of "annotators" which tells OntoGPT,
which ontology to ground the responses to. The generated YAML
templates are saved into a separate file after generation, which
makes them ready for use.

The python code that is used by OntoGPT in the process of
ontology linking, is similarly generated by using the extracted
information to fill in the "general template" and is then saved to
a separate file.

5 LIMITATIONS
5.1 Multiple Same-Class Concepts
OntoGPT has problems trying to link two or more concepts to a
place in the ontology if the concepts are of the same class. This
happens because both concepts suit the description and similar
criteria that OntoGPT extracts the information based on. This
causes OntoGPT to merge both concepts into a single string and
then try to locate the said string inside the ontology, which fails
because there is no individual inside the ontology class with such
a name. An example of such a response is shown in Listing 1:

Listing 1: Example of a bad response
e x t r a c t e d _ o b j e c t :

c o n t i n e n t : AUTO: Europe%2C%20 A f r i c a
n amed_ en t i t i e s :

− i d : AUTO: Europe%2C%20 A f r i c a
l a b e l : Europe , A f r i c a

If OntoGPT managed to locate the concept inside the text
in the ontology, it returns its id (an example of this is "sea:
GEO:000055471" and "id: GEO:000055471 : White Sea") If the
concept suits the class criteria, but couldn’t be located inside the
ontology, it returns it as a “AUTO” detection. For the purpose of
ontology linking this is not optimal as it does not give us access
to the additional information that is stored inside the ontology’s
individual information. The ontology’s individual information is
a set of predefined relationships and properties, that an individ-
ual concept has. For example, if the individual "Africa" is defined
inside the ontology, the individual’s data would include its size,
countries on the continent, population, and climates, among oth-
ers. This information gives us reliable information about a certain
concept, allowing for more contextual understanding.

To solve this problem, the approach of creating "buffer" classes
was taken, where a certain class from ontology would be used to
generate three classes describing the different occurrences of the
ontology class and a description that would provide sufficient
context to OntoGPT to separate the same class concepts into
different entities. The corrected response is showcased in Listing
2:

Listing 2: Example of a corrected response
e x t r a c t e d _ o b j e c t :

c o n t i n e n t : GEO: 0 0 0 0 0 0 3 4 0
c on t i n en t _ 2 : GEO: 0 0 0 0 0 0 3 4 2

n amed_ en t i t i e s :
− i d : GEO: 0 0 0 0 0 0 3 4 0

l a b e l : A f r i c a
− i d : GEO: 0 0 0 0 0 0 3 4 2

l a b e l : Europe
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While this approach deals with a high percentage of this type
problem, it does not cover the cases where more than three same-
class concepts are inside the piece of text being analyzed.

6 CONCLUSIONS
UsingOntoGPT in theGraphMassivizer strategic foresight project
will prove valuable for enriching causal graphs with linked on-
tology data, aiming to improve predictive accuracy in predicting
future events. Despite OntoGPT’s initial focus on medical data,
some custom adaptations were successfully implemented to suit
a portion of different domains. However, limitations persist in
distinguishing between multiple instances of the same concept
class. These challenges highlight the need for further develop-
ment to enhance the tool’s versatility across a broader array of
applications and ontologies.
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