
Integrating Knowledge Graphs and Large Language Models for
Querying in an Industrial Environment
Domen Hočevar

domenhocevar1@gmail.com

Jožef Stefan Institute

Ljubljana, Slovenia

Klemen Kenda

klemen.kenda@ijs.si

Jožef Stefan Institute

Ljubljana, Slovenia

Abstract
Knowledge graphs have traditionally required the use of specific

query languages, such as SPARQL, to retrieve relevant data. In

this paper, we present a system capable of performing natural

language queries on knowledge graphs by leveraging retrieval-

augmented generation (RAG) and large language models (LLMs).

Our system can ingest large knowledge graphs and answer queries

using two approaches: first, by utilizing LLMs to extract informa-

tion directly from subgraphs; and second, by generating SPARQL

queries with LLMs and using the results to inform further infer-

ence, such as counting the number of items.

Keywords
knowledge graph, semantic inference, Industry 4.0, LLM, RAG

1 Introduction
In the context of Industry 4.0, knowledge graphs play a crucial

role in mapping and describing the entire production vertical,

from supply and demand dynamics to intricate details within the

production process. This includes the configuration of shop floors,

production lines, machines, and data setups, extending even to

specific datasets generated during operations. Knowledge graphs

can also include relevant information about the tools required for

particular processes, as well as details about personnel, including

their skills and roles.

A key standard for representing such data within the Industry

4.0 initiative is the Asset Administration Shell (AAS) [3], which

provides a logical representation for a factory asset (can also be

a piece of software, etc.). By adopting AAS, industries can en-

sure interoperability and standardization, enabling more efficient

data exchange and integration across various systems, ultimately

enhancing the agility and responsiveness of manufacturing pro-

cesses.

Querying knowledge graphs can be a challenging task for end

users, as it often requires expertise in specialized query languages

such as SPARQL [8] — a skill that is not widely known among

non-experts. Working with SPARQL SELECT queries remains a

challenge also for LLMs, with performance varying significantly

depending on the specific model and task complexity. While the

leading LLMs can reliably address basic syntax errors, generating

semantically accurate SPARQL SELECT queries remains difficult

in many cases [10]. Similar work has been done on interaction

with databases, however even with SQL query generation the

results of GPT-4 are still far behind human ability (approx. 55%

execution accuracy) [9].

Permission to make digital or hard copies of all or part of this work for personal

or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this

work must be honored. For all other uses, contact the owner/author(s).

Information Society 2024, 7–11 October 2024, Ljubljana, Slovenia
© 2024 Copyright held by the owner/author(s).

https://doi.org/10.70314/is.2024.sikdd.5

To overcome these challenges, we propose a system that en-

ables users to interact with knowledge graphs through natural

language queries. The system leverages LLMs’ capabilities to

interpret knowledge graphs while compensating for their limited

ability to generate fully syntactically and semantically correct

SPARQL queries. Proposed system, depicted in Figure 1, lever-

ages large language models (LLMs) [11] to process natural lan-

guage inputs and provide responses in natural language. Our

approach integrates retrieval-augmented generation (RAG) tech-

niques alongside the automatic generation of SPARQL queries

based on natural language input [2].

Figure 1: Intended usage of the system: AAS instances are
converted into a knowledge graph, enabling natural lan-
guage queries by the user.

By doing so, our system not only simplifies the querying pro-

cess but also ensures that the responses are accurate and con-

textually relevant, making knowledge graphs more accessible

and usable for a broader range of users. Additionally, the use of

LLMs in combination with SPARQL querying enables the system

to handle complex tasks, including those that require logical rea-

soning, aggregation, or interpretation of data, thus enhancing

its utility in real-world applications. For example, our system is

able to answer queries such as: “Give me all machines that

are capable of drilling a hole with 2cm perimeter”.

Finally, question answering with the help of knowledge graphs

and language models has been tackled before [16], however, the

development of retrieval-augmented generation (RAG) systems

has seen significant growth recently. In 2024, several preprints

have emerged showcasing the application of the RAG approach

to knowledge graphs [12, 13, 14]. This paper contributes to this

rapidly evolving field by presenting our own advancements and

findings.

https://doi.org/10.70314/is.2024.sikdd.5


Information Society 2024, 7–11 October 2024, Ljubljana, Slovenia Domen Hočevar and Klemen Kenda

2 Data
This study uses a generated dataset representing a hypothetical

factory with various machine models, designed to test the capabil-

ities of the developed application. The work is part of the Smart

Manufacturing pilot in the EU-funded HumAIne project [7], with

the aim of eventually using real-world data from participating

factories.

The mock factory includes models of "drillers", "circle cut-

ters", and "circular saws", each with unique names, manu-

facturers, and descriptions. These models are represented using

AASs with relevant submodels for energy consumption, man-

ufacturer details, and operation-specific parameters like hole

diameter or depth of cut.

We created AASs for 7 drilling machine models, 7 circle cutter

models, and 10 circular saw models, along with 1,000 machine

instances randomly assigned to these models. Numerical values

and availability were populated randomly for testing, reflecting

potential real-world variations.

The initial step after acquiring AAS data is to convert it into

a knowledge graph. This process involves transforming JSON-

serialized AASs into RDF triples, which represent the semantic

information of the data. Once the RDF triples are generated, they

are stored in a GraphDB
1
repository. To enable semantic data re-

trieval, we employ a connector that interfaces with the ChatGPT

Retrieval Plugin
2
, which operates alongside the server applica-

tion. When new triples are added to the GraphDB repository, the

connector triggers the plugin to generate vector embeddings of

the text representations of the new nodes. These embeddings

are created using a language model and are stored in a separate

vector database. The ChatGPT Retrieval Plugin enables interacte

to a selection of different vector databases, in our case we em-

ployed the Milvus vector database. The system is also designed

to maintain consistency; if any triples are removed from the

GraphDB repository, the corresponding vector embeddings are

automatically deleted from the vector database.

3 Methodology
The system architecture is illustrated in Figure 2. The user inter-

acts with the system through a client application, developed using

ReactJS, which serves as the graphical user interface (GUI). This

client application communicates with the system’s middleware,

which is built on the Flask framework. Users have the capability

to upload AAS data to construct and enhance the knowledge

graph, as well as to issue natural language queries.

The middleware acts as the core of the system, facilitating com-

munication between the client application, the knowledge graph

stored in a GraphDB database, and OpenAI’s GPT models. The

AAS data uploaded by the user is first converted into RDF triples

and then stored in the GraphDB repository. The Flask-based mid-

dleware also integrates with the ChatGPT Retrieval Plugin, which

is responsible for generating vector embeddings of the knowledge

graph nodes using OpenAI’s text-embedding-ada-002 model.

These vector embeddings are stored in the Milvus vector data-

base [15]. The ChatGPT Retrieval Plugin allows the system to

efficiently retrieve the most relevant embeddings in response

to user queries, ensuring that the system can provide accurate

and contextually appropriate answers. Additionally, the middle-

ware leverages LlamaIndex
3
to manage sub-graph retrieval and

1
https://graphdb.ontotext.com/

2
https://github.com/openai/chatgpt-retrieval-plugin

3
https://www.llamaindex.ai/

query generation, which are essential for responding to complex

queries by the user.

Figure 2: System architecture for retrieval augmented gen-
eration with knowledge graphs in Industry 4.0.

In summary, the architecture is designed to streamline the

process of building a knowledge graph from AAS data and en-

ables users to query this graph with retrieval-augmented gener-

ation (RAG) using natural language, with the system handling

the complexities of data storage, retrieval, and natural language

processing in the background.

The sequence diagram in Figure 3 illustrates the interaction

between system components during query processing. Our sys-

tem enables two distinct approaches to handle natural language

queries, often combining both to generate a comprehensive an-

swer for the user.

Figure 3: Sequence diagram of different approaches for
data extraction. The blue box represents the RAG approach
and the red box represents the SPARQL query generation
approach. Note that RAG approach utilizes results from
SPARQL queries on the knowledge graph.

https://graphdb.ontotext.com/
https://github.com/openai/chatgpt-retrieval-plugin
https://www.llamaindex.ai/


Querying with KG and LLMs for Industry 4.0 Information Society 2024, 7–11 October 2024, Ljubljana, Slovenia

The first approach utilizes a Retrieval-Augmented Generation

(RAG) method. Upon receiving a query, the system analyzes the

query to identify relevant concepts and generates vector embed-

dings for these concepts [5]. These embeddings are then matched

against the knowledge graph stored in GraphDB to find the most

relevant nodes. Once the relevant nodes are identified, a naive

neighborhood expansion is performed, capturing additional re-

lated nodes to ensure a more complete context. The search is

parameterized using parameters: scope, how many nodes from

the graph to retrieve; breadth, from how many relevant nodes

to start the neighborhood expansion; score weight, how many

more nodes are visited from the identified relevant nodes that

are deemed more relevant using embedding similarity. This sub-

graph, along with a few examples for context, is then fed into

the Large Language Model (LLM) using a few-shot [1] learning

technique to generate a response [4]. The LlamaIndex framework

provides a general context query for turning triples into natu-

ral language. This method is particularly effective for queries

requiring contextual understanding and extraction of complex

information from the knowledge graph.

The second approach involves generating a SPARQL query

based on the natural language query and the ontology used

within the knowledge graph. The system attempts to execute this

SPARQL query in the GraphDB database. If the query runs suc-

cessfully, the resulting data is passed to the LLM to formulate the

final answer. This approach is especially beneficial for tasks that

involve counting instances or performing specific data aggrega-

tion operations, where LLMs alone might struggle. This approach

benefits from the first approach as it can use it as backup or to

enrich the SPARQL query results with additional context.

4 Results
To thoroughly evaluate the system, we employed three different

evaluations: (a) assessing the accuracy of data retrieval based on

query parameters (not using query generation), (b) evaluating the

system’s ability to correctly fetch the number of instances (testing

query generation), and (c) conducting a manual assessment of

most relevant user queries.

4.1 Accuracy of Data Retrieval
The first approach involved testing the system’s ability to accu-

rately retrieve data that met specific query conditions without

employing SPARQL query generation. We focused on queries

where the user requested a list of machines of a particular type

with a voltage requirement less than or equal to a specified value.

An example query would be: “Return all drilling machines

that consume at most 4 volts and specify their consump-

tion.”

We conducted these tests on three types ofmachines: "drilling

machines", "circle cutters", and "circular saws". The voltage

values specified in the queries ranged from 0 to 10 volts, inclu-

sive. The evaluation was designed to measure how accurately

the system could identify and return the correct set of machines

based on these voltage constraints.

For these tests, the following parameters were used (scope: 100,

breadth: 1000, score weight: 100, model: gpt-4-1106-preview,
query generation strategy: disabled).

The system’s performance was assessed by comparing the

retrieved data against the expected results, specifically checking

the number of machines that met the voltage criteria and identi-

fying any errors, such as incorrect voltage values or unnecessary

machine retrievals. Results are depicted in Figures 4 and 5.

Figure 4: Performance of the system by the type of the
machine and query.

In Figure 4, each table contains four columns: "V" (voltage

specified in the query), "R" (percentage of correctly retrieved ma-

chines), "W" (number of machines with incorrect voltage), and

"A" (number of unnecessary machine retrievals). Figure 5 summa-

rizes the results: "Fully Correct Answers" shows the percentage

of queries that returned all requested information without errors;

"Share of Expected Information Found" indicates the proportion

of requested information retrieved; and "Share of Incorrectly Dis-

played Voltages" represents the percentage of retrieved voltages

that were incorrect.

Figure 5: Combined performance.

The results show that sometimes the LLM would incorrectly

generate a different voltage requirement for a machine, making

it appear to satisfy the query conditions. However, the retrieved

machines were always of the correct type. For example, a query

like “Name all drilling machines and specify their voltage

reqirements” correctly retrieves all machines with the right

specifications, suggesting the issue may lie with the LLM rather

than the knowledge retrieval process.

To address this, users can try adjusting query parameters or

rewording the query to verify the information’s accuracy. If this



Information Society 2024, 7–11 October 2024, Ljubljana, Slovenia Domen Hočevar and Klemen Kenda

type of query is crucial, incorporating voltage-specific queries

into the query generation strategy could improve reliability, al-

though the LLM may struggle with large lists due to its context

window limitations. As shown in Figure 5, these types of queries

often do not reliably provide all requested information in one

answer, so users should run multiple queries to increase the

likelihood of retrieving all necessary data.

4.2 Instance Fetching Accuracy
In these tests, we tested query generation strategy. The following

parameters were used (scope: 100, breadth: 1000, score weight:

100, model: gpt-4-1106-preview, query generation strategy:

enabled).
The queries asked for the number of available instances for se-

lected machine models, such as "Get the number of available

[name of the machine 1], [name of the machine 2] machine

instances. Specify the number for each machine type sepa-

rately.". The query format was picked such that the LLM will

benefit from query generation (availability property is specified

in the schema supplied for query generation).

A total of 100 queries were run, with 10 queries for each num-

ber of specified machine models (ranging from 1 to 10 models).

The share of fully correct answers for each query type was be-

tween 80 and 100%. The overall accuracy was 96%. This supports

our hypothesis that the query generation strategy provides more

accurate answers for slightly more complex queries.

4.3 Manual Evaluation of Example Queries
This evaluation was initially performed to identify several short-

comings in our methodologies as mentioned in the previous sub-

sections. By manually evaluating specific queries relevant to end

users, we were able to partially address these issues and fine-tune

parameters to achieve more accurate results. For instance, while

the system’s initial results were often incomplete (e. g., query did

not return all the machines satisfying certain criteria), increasing

the breadth parameter to include a larger subgraph and allowing

LLMs to traverse a broader neighborhood improved the results.

Additionally, we demonstrated that subgraph retrieval and query

generation can complement each other, further enhancing overall

performance. All the results are commented in detail in [6].

5 Conclusions
In this paper, we presented a system that bridges the gap between

natural language processing and querying knowledge graphs,

specifically within the context of Industry 4.0. By leveraging

large language models (LLMs) and retrieval-augmented gener-

ation (RAG), our system allows users to interact with complex

knowledge graphs using natural language queries, thereby sim-

plifying access to detailed manufacturing data.

Our evaluation demonstrated the usability of our system, how-

ever with the integration of LLMs for natural language under-

standing, some challenges remain. These include occasional inac-

curacies in data retrieval and the LLM’s limited ability to handle

large datasets or specific queries. By adjusting subgraph retrieval

parameters such as breadth and scope, and by combining it with

SPARQL query generation, we were able to significantly enhance

the system’s accuracy and reliability.

This work highlights the potential of combining knowledge

graphs with LLMs to create more intuitive and effective query

systems in industrial environments. Future improvements could

focus on refining query strategies and further optimizing the

balance between subgraph retrieval and SPARQL generation to

ensure even more robust and comprehensive query handling.

Acknowledgements
This work was supported by the European Commission under

the Horizon Europe project HumAIne, Grant Agreement No.

101120218. We would like to express our gratitude to all project

partners for their contributions and collaboration.

References
[1] Tom B Brown. 2020. Language models are few-shot learners. arXiv preprint

arXiv:2005.14165.
[2] Diego Bustamante and Hideaki Takeda. 2024. Sparql generation with entity

pre-trained gpt for kg question answering. arXiv preprint arXiv:2402.00969.
[3] 2022. Details of the asset administration shell. https://www.plattform-i40.d

e/IP/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Adm

inistration_Shell_Part1_V3.pdf?__blob=publicationFile&v=1 (visited on

02/22/2024). (2022).

[4] Chao Feng, Xinyu Zhang, and Zichu Fei. 2023. Knowledge solver: teach-

ing llms to search for domain knowledge from knowledge graphs. ArXiv,
abs/2309.03118. https://api.semanticscholar.org/CorpusID:261557137.

[5] Luis Gutiérrez and Brian Keith. 2019. A systematic literature review on word

embeddings. In Trends and Applications in Software Engineering: Proceedings
of the 7th International Conference on Software Process Improvement (CIMPS
2018) 7. Springer, 132–141.

[6] Domen Hočevar. 2024. Integrating Knowledge Graphs and Large Language
Models for Querying in an Industrial Environment. Bachelor’s Thesis. Uni-
versity of Ljubljana, Faculty of Computer, Information Science, Faculty of

Mathematics, and Physics, Ljubljana, Slovenia, (Aug. 2024). Interdisciplinary

University Study Program, First Cycle, Computer Science and Mathematics.

[7] Humaine Horizon. 2024. Humaine horizon. https://humaine-horizon.eu/.

Accessed: 2024-08-26. (2024).

[8] Pérez Jorge. 2006. Semantics and complexity of sparql. In Proc. 5th Int.
Semantic Web Conference (ISWC2006).

[9] Jinyang Li et al. 2024. Can llm already serve as a database interface? a big

bench for large-scale database grounded text-to-sqls. Advances in Neural
Information Processing Systems, 36.

[10] Lars-Peter Meyer, Johannes Frey, Felix Brei, and Natanael Arndt. 2024.

Assessing sparql capabilities of large language models. (2024). https://arxiv

.org/abs/2409.05925 arXiv: 2409.05925 [cs.DB].
[11] Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed An-

war, Muhammad Usman, Naveed Akhtar, Nick Barnes, and Ajmal Mian.

2023. A comprehensive overview of large language models. arXiv preprint
arXiv:2307.06435.

[12] Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, and Xindong

Wu. 2024. Unifying large languagemodels and knowledge graphs: a roadmap.

IEEE Transactions on Knowledge and Data Engineering.
[13] Diego Sanmartin. 2024. Kg-rag: bridging the gap between knowledge and

creativity. arXiv preprint arXiv:2405.12035.
[14] Bhaskarjit Sarmah, Benika Hall, Rohan Rao, Sunil Patel, Stefano Pasquali,

and Dhagash Mehta. 2024. Hybridrag: integrating knowledge graphs and

vector retrieval augmented generation for efficient information extraction.

arXiv preprint arXiv:2408.04948.
[15] Jianguo Wang et al. 2021. Milvus: a purpose-built vector data management

system. In Proceedings of the 2021 International Conference on Management
of Data, 2614–2627.

[16] Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut, Percy Liang, and Jure

Leskovec. 2021. Qa-gnn: reasoning with language models and knowledge

graphs for question answering. arXiv preprint arXiv:2104.06378.

https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V3.pdf?__blob=publicationFile&v=1
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V3.pdf?__blob=publicationFile&v=1
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V3.pdf?__blob=publicationFile&v=1
https://api.semanticscholar.org/CorpusID:261557137
https://humaine-horizon.eu/
https://arxiv.org/abs/2409.05925
https://arxiv.org/abs/2409.05925
https://arxiv.org/abs/2409.05925

	Abstract
	1 Introduction
	2 Data
	3 Methodology
	4 Results
	4.1 Accuracy of Data Retrieval
	4.2 Instance Fetching Accuracy
	4.3 Manual Evaluation of Example Queries

	5 Conclusions
	Acknowledgements

